Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hosts for complexation

Fig. 16 Rh-catalyzed asymmetric hydrogenation of a-acetamido-acrylic acid ester 37 using streptavidin mutants as hosts for complexing 36 [130]... Fig. 16 Rh-catalyzed asymmetric hydrogenation of a-acetamido-acrylic acid ester 37 using streptavidin mutants as hosts for complexing 36 [130]...
Amalgamation of stmctural units typical of crowns and calixarenes has led to the development of calixpodands, calixcrowns, and calixspherands (55). Naturally they behave as cation complexants rather than iaclusion hosts for uncharged molecules. [Pg.65]

Fig. 3-4. (A) Changes in chemical shift of protons of cyclophane -CH - groups between bipyridinium and phenyl in H NMR spectra of 3 as a function of (R)-DOPA concentration (a) 0, (b) 0.111, and (c) 0.272 mol (B) Change in chemical shift plotted against the analytical concentration of (R)- and (5)-DOPA. The solid line is calculated for 1 1 host - guest complexation. (Reprinted with permission from ref. [79]. Copyright 1998, American Chemical Society.)... Fig. 3-4. (A) Changes in chemical shift of protons of cyclophane -CH - groups between bipyridinium and phenyl in H NMR spectra of 3 as a function of (R)-DOPA concentration (a) 0, (b) 0.111, and (c) 0.272 mol (B) Change in chemical shift plotted against the analytical concentration of (R)- and (5)-DOPA. The solid line is calculated for 1 1 host - guest complexation. (Reprinted with permission from ref. [79]. Copyright 1998, American Chemical Society.)...
Two other types of host for arenediazonium salts were found by Shinkai et al., the calix[ ]arenes, 11.10 (1987 a, 1987 b) and 11.11 (1988). The hexasulfonated calix[6]arenes 11.10 suppress dediazoniation of substituted benzenediazonium ions in aqueous solution much more efficiently than 18-crown-6. The complexation of calix[ ]arenes 11.11 (n = 4, 6, and 8) with 4 -dimethylaminoazobenzene-4-diazonium ions (11.12) was measured, and was found to be weaker than that of 18-crown-6. It may be that the large difference in behavior between these two types of complexation reagents 11.10 and 11.11 is due to the significantly different diazonium ions used as guests for the two types. Electronically the azobenzenediazonium ion (11.12) is... [Pg.295]

Kuokkanen evaluated a series of constants. Kpeg for substituted diazonium ions with PEG 1000 and found a reaction constant (p = 1.12) comparable to those for complexation with the three crown ethers investigated by Nakazumi et al. (1983), p = 1.18-1.38). It is therefore likely that the host-guest interaction of diazonium ions with acyclic polyethers is basically similar to that with crown ethers. A dual substituent parameter analysis (DSP, see Sec. 8.3) for (Nakazumi et al., 1987)... [Pg.298]

Laali and Lattimer (1989 see also Laali, 1990) observed arenediazonium ion/crown ether complexes in the gas phase by field desorption (FD) and by fast atom bombardment (FAB) mass spectrometry. The FAB-MS spectrum of benzenediazonium ion/18-crown-6 shows a 1 1 complex. In the FD spectrum, apart from the 1 1 complex, a one-cation/two-crown complex is also detected. Dicyclo-hexano-24-crown-6 appears to complex readily in the gas phase, whereas in solution this crown ether is rather poor for complexation (see earlier in this section) the presence of one or three methyl groups in the 2- or 2,4,6-positions respectively has little effect on the gas-phase complexation. With 4-nitrobenzenediazonium ion, 18-crown-6 even forms a 1 3 complex. The authors assume charge-transfer complexes such as 11.13 for all these species. There is also evidence for hydride ion transfer from the crown host within the 1 1 complex, and for either the arenediazonium ion or the aryl cation formed from it under the reaction conditions in the gas phase in tandem mass spectrometry (Laali, 1990). [Pg.301]

Checking the literature of the second half of the 1980s for applications of crown complexes of arenediazonium salts for synthetic purposes, one gets the impression that these complexes are not widely used. The two comprehensive reviews by Izatt et al. (1985, 1991) show a definite decline of interest in host —guest complexation of arenediazonium ions in the second half of the 1980s. The subject of arenediazonium... [Pg.302]

In this way hosts 141-145 with both a cr-bonded Lewis acidic boron atom for complexation of anions and a conventional multidentate ligand for cations are generated. Complexation experiments of the 21-membered crown [6] boronate 142 with different potassium salts KX (X = F, Cl, Br, I, SCN, CN, OMe) indicate that there is a high specificity for the incorporation of KF, whereby F is bound covalently to the boron atom and is complexed by the crown ether (146, Fig. 39). An X-ray study has shown that the complexation of KF is heterotopic, i.e., both ions are complexed inside the same host. Some of the salts can only be bound in a monotopic way (KI and KSCN) [237]. [Pg.41]

Other examples of organized molecular assemblies of interest for photocatalysis are (1) PC-A, PC-D or D-PC-A molecules where PC, A and D fragments are separated by rigid bridges (2) host-guest complexes (3) micelles and microemulsions (4) surfactant monolayers or bilayers attached to solid surfaces, and (5) polyelectrolytes [19]. [Pg.42]

Macrocyclic receptors made up of two, four or six zinc porphyrins covalently connected have been used as hosts for di- and tetrapyridyl porphyrins, and the association constants are in the range 105-106 M-1, reflecting the cooperative multipoint interactions (84-86). These host-guest complexes have well-defined structures, like Lindsey s wheel and spoke architecture (70, Fig. 27a), and have been used to study energy and electron transfer between the chromophores. A similar host-guest complex (71, Fig. 27b) was reported by Slone and Hupp (87), but in this case the host was itself a supramolecular structure. Four 5,15-dipyridyl zinc porphyrins coordinated to four rhenium complexes form the walls of a macrocyclic molecular square. This host binds meso-tetrapyridyl and 5,15-dipyridyl porphyrins with association constants of 4 x 107 M-1 and 3 x 106 M-1 respectively. [Pg.244]

The [Ni(NCS)f,]4 ion is almost perfectly octahedral, with Ni—N distances of around 209.5 pm and N—Ni—N angles around 89.5°. The Ni—N—C and N—C—S entities are practically linear.438,439 In [Ni(NCS)2L2] where L is a R-substituted pyridine, stereochemistry and spin state depend on the type and positions of R.431 While for 2-Me- and 2-Et-pyridine square planar complexes are observed, other pyridins lead to coordination polymers with pseudo-octahedral Ni11 due to N,S-bridging thiocyanate. Ni11 thiocyanato complexes have been studied quite intensively as hosts for inclusion compounds.440"442... [Pg.283]

There are many examples of platinum(II) interacting with metals such as lead(II) or thallium(I) but few where the same metals interact with platinum(O). Catalano et al. have reported a series of metallocryptands such as the one shown in (11) that act as hosts for thallium(I)72 and lead(II).73 They have also reported an unsupported thallium(I) interaction with the platinum in [Pt(PR3)3] (R = Ph or R3 = Ph2py).74 The Pt Tl separations in the cryptands (2.791-2.795 A) are slightly shorter than those in the unsupported complexes (2.865-2.889 A).72,74... [Pg.682]


See other pages where Hosts for complexation is mentioned: [Pg.126]    [Pg.412]    [Pg.232]    [Pg.361]    [Pg.27]    [Pg.126]    [Pg.412]    [Pg.232]    [Pg.361]    [Pg.27]    [Pg.175]    [Pg.62]    [Pg.68]    [Pg.75]    [Pg.339]    [Pg.289]    [Pg.290]    [Pg.293]    [Pg.294]    [Pg.321]    [Pg.32]    [Pg.119]    [Pg.194]    [Pg.10]    [Pg.103]    [Pg.346]    [Pg.107]    [Pg.115]    [Pg.116]    [Pg.117]    [Pg.120]    [Pg.330]    [Pg.200]    [Pg.437]    [Pg.613]    [Pg.950]    [Pg.10]    [Pg.33]    [Pg.123]    [Pg.146]    [Pg.226]   


SEARCH



Host complex

Host complexation

© 2024 chempedia.info