Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homoallylic alcohols, asymmetric

A -Boc amines are made from the metallated /-hutyl Af-tosyloxycarbamate. Allylic displacements. Applications of this process include vinyl- and allyltin compounds. Homoallylic alcohols asymmetrically substituted at the allylic position are obtained from 4-bromo-2-alkenoyl derivatives of camphor sultam in two... [Pg.258]

B. Potassium allyl- and crotyltrifluoroborates undergo addition to aldehydes in biphasic media as well as water to provide homoallylic alcohol in high yields (>94%) and excellent diastereoselectivity (dr >98 2). The presence of a phase-transfer catalyst (e.g., B114NI) significantly accelerates the rate of reaction, whereas adding fluoride ion retards the reaction (Eq. 8.70).165 The method was applied to the asymmetric total synthesis of the antiobesity agent tetrahydrolipstatin (orlistat).166... [Pg.252]

The complex -Tol-BINAP-AgF (/>-Tol-BINAP - 2,2 -bis(di-/)-tolylphosphanyl)-l,l -binapthyl) catalyzes the asymmetric addition of allylic trimethoxysilanes to aldehydes (Equation (7)).7 3 The process can provide various optically active homoallylic alcohols with high enantioselectivity (up to 96% ee) and a remarkable 7 and anti- selectivities are observed for the reaction with crotylsilanes, irrespective of the configuration of the double bond ... [Pg.949]

During the past 2 years several research groups have published research that either uses or expands upon Crowe s acyclic cross-metathesis chemistry. The first reported application of this chemistry was in the synthesis of frans-disubstitut-ed homoallylic alcohols [30]. Cross-metathesis of styrenes with homoallylic silyl ethers 15, prepared via asymmetric allylboration and subsequent alcohol protection, gave the desired trans cross-metathesis products in moderate to good yields (Eq. 15). [Pg.173]

In the case of tri-substituted alkenes, the 1,3-syn products are formed in moderate to high diastereoselectivities (Table 21.10, entries 6—12). The stereochemistry of hydrogenation of homoallylic alcohols with a trisubstituted olefin unit is governed by the stereochemistry of the homoallylic hydroxy group, the stereogenic center at the allyl position, and the geometry of the double bond (Scheme 21.4). In entries 8 to 10 of Table 21.10, the product of 1,3-syn structure is formed in more than 90% d.e. with a cationic rhodium catalyst. The stereochemistry of the products in entries 10 to 12 shows that it is the stereogenic center at the allylic position which dictates the sense of asymmetric induction... [Pg.660]

Striking examples of this phenomenon are presented for allyl and homoallyl alcohols in Eqs. (5) to (7). The stereodirection in Eq. (5) is improved by a chiral (+)-binap catalyst and decreased by using the antipodal catalyst [60]. In contrast, in Eq. (6) both antipode catalysts induced almost the same stereodirection, indicating that the effect of catalyst-control is negligible when compared with the directivity exerted by the substrate [59]. In Eq. (7), the sense of asymmetric induction was in-versed by using the antipode catalysts, where the directivity by chiral catalyst overrides the directivity of substrate [52]. In the case of chiral dehydroamino acids, where both double bond and amide coordinate to the metal, the effect of the stereogenic center of the substrate is negligibly small and diastereoface discrimination is unsuccessful with an achiral rhodium catalyst (see Table 21.1, entries 9 and 10) [9]. [Pg.670]

Efforts have been made to apply r 3-allyltitanium chemistry to the asymmetric synthesis of homoallylic alcohols and carboxylic acids. The synthesis and reactions of chiral r 3 -allyl-titanocenes with planar chirality, or containing Cp ligands with chiral substituents, have been reported [6c,15,30—32]. The enantiofacial selectivity in the allyltitanation reactions has been examined for the complexes 12 [15], 13 [30], 14 [31], 15, 16, and 17 [32] depicted in Figure 13.2. [Pg.458]

The above interesting approach to the asymmetric allyltitanation reaction does, however, have a limitation. Thus, L-glucose is much more expensive that the D-form and, consequently, homoallylic alcohols of the opposite configuration cannot easily be obtained by this method. In an attempt to induce the opposite si face selectivity, other acetonide derivatives of monosaccharides from the xylose, idose, and allose series were tested [42b,42c], The enantiofacial discrimination was, however, much lower than that with DAGOH and both re and si face selective additions to aldehydes were observed. [Pg.462]

Table 5.2 Asymmetric epoxidation of cis- and trans-allylic and homoallylic alcohols using poly(octamethylene tartrate)/Ti(Oz Pr)4/TBHP. [Pg.85]

Asymmetric crotylboration. The reaction of an achiral, unhindered aldehyde with (E)-(R,R)-2 gives anti- and syrc-homoallylic alcohols in the ratio of about 20 1 ... [Pg.104]

The enantioselective addition of an allylsilane to an aldehyde catalyzed by chiral acyloxyborane (CAB) 13 is an excellent method for obtaining optically active homoallyl alcohols.Itsuno and Kumagai reported that the synthesis of a new optically active polymer with chirality on the mainchain is possible by applying this reaction to the asymmetric polymerization of bis(allylsilane) and dialdehyde (Scheme 12.11). ... [Pg.365]

Bartlett PA, Johnson WS, Elliott JD (1983) Asymmetric synthesis via acetal templates. 3. On the stereochemistry observed in the cyclization of chiral acetals of polyolefinic aldehydes formation of optically active homoallylic alcohols. J Am Chem Soc 105 2088-2089... [Pg.68]

Zrrconium(IV) and hafnium(IV) complexes have also been employed as catalysts for the epoxidation of olefins. The general trend is that with TBHP as oxidant, lower yields of the epoxides are obtained compared to titanium(IV) catalyst and therefore these catalysts will not be discussed iu detail. For example, zirconium(IV) alkoxide catalyzes the epoxidation of cyclohexene with TBHP yielding less than 10% of cyclohexene oxide but 60% of (fert-butylperoxo)cyclohexene °. The zirconium and hafnium alkoxides iu combiuatiou with dicyclohexyltartramide and TBHP have been reported by Yamaguchi and coworkers to catalyze the asymmetric epoxidation of homoallylic alcohols . The most active one was the zirconium catalyst (equation 43), giving the corresponding epoxides in yields of 4-38% and enantiomeric excesses of <5-77%. This catalyst showed the same sense of asymmetric induction as titanium. Also, polymer-attached zirconocene and hafnocene chlorides (polymer-Cp2MCl2, polymer-CpMCls M = Zr, Hf) have been developed and investigated for their catalytic activity in the epoxidation of cyclohexene with TBHP as oxidant, which turned out to be lower than that of the immobilized titanocene chlorides . ... [Pg.419]

Ukaji and co-workers employed bis(oxazoline) ligands in the asymmetric bis(alkoxycarbonylation) reaction of homoallylic alcohols. One example of this reaction, the conversion of homoallylic alcohol 200 to its carbonylation product 201, is illustrated in Figure 9.58. This reaction proceeded in 78% yield with an ee of 50%. [Pg.573]

N atom of which carries a chiral substituent, react with aldehydes with high se-lectivities with formation of homoallyl alcohols of type 4, which were used in the asymmetric synthesis of complex molecules [12]. [Pg.78]

Scheme 1.3.6 Asymmetric synthesis of sulfonimidoyl-substituted homoallyl alcohols. Scheme 1.3.6 Asymmetric synthesis of sulfonimidoyl-substituted homoallyl alcohols.
Chiral alkenyl and cycloalkenyl oxiranes are valuable intermediates in organic synthesis [38]. Their asymmetric synthesis has been accomplished by several methods, including the epoxidation of allyl alcohols in combination with an oxidation and olefination [39a], the epoxidation of dienes [39b,c], the chloroallylation of aldehydes in combination with a 1,2-elimination [39f-h], and the reaction of S-ylides with aldehydes [39i]. Although these methods are efficient for the synthesis of alkenyl oxiranes, they are not well suited for cycloalkenyl oxiranes of the 56 type (Scheme 1.3.21). Therefore we had developed an interest in the asymmetric synthesis of the cycloalkenyl oxiranes 56 from the sulfonimidoyl-substituted homoallyl alcohols 7. It was speculated that the allylic sulfoximine group of 7 could be stereoselectively replaced by a Cl atom with formation of corresponding chlorohydrins 55 which upon base treatment should give the cycloalkenyl oxiranes 56. The feasibility of a Cl substitution of the sulfoximine group had been shown previously in the case of S-alkyl sulfoximines [40]. [Pg.100]

SCHEME 21. Asymmetric epoxidation of allylic and homoallylic alcohols. [Pg.273]


See other pages where Homoallylic alcohols, asymmetric is mentioned: [Pg.249]    [Pg.522]    [Pg.37]    [Pg.38]    [Pg.824]    [Pg.320]    [Pg.518]    [Pg.66]    [Pg.140]    [Pg.627]    [Pg.217]    [Pg.526]    [Pg.356]    [Pg.271]    [Pg.451]    [Pg.103]    [Pg.36]    [Pg.191]    [Pg.111]    [Pg.81]    [Pg.227]    [Pg.342]    [Pg.386]    [Pg.27]   


SEARCH



Homoallyl

Homoallyl alcohol

Homoallyl alcohols 1,3-asymmetric induction

Homoallyl alcohols asymmetric epoxidation

Homoallyl alcohols asymmetric hydrogenation

Homoallyl alcohols asymmetric synthesis

Homoallylation

Homoallylic

Homoallylic alcohol substrate, asymmetric

Homoallylic alcohol substrate, asymmetric formation

Homoallylic alcohols 1,3-asymmetric induction

Homoallylic alcohols asymmetric epoxidation

Homoallylic alcohols asymmetric hydrogenation

Homoallylic alcohols, Sharpless asymmetric

Homoallylic alcohols, asymmetric synthesis

© 2024 chempedia.info