Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hilbert space Fock representation

It can be easily checked by direct computation that we have really obtained a realization of the Lie algebra g in a Hilbert (Fock) space, [T a, T fc] = ifabc fc, in accordance with (11), where Ta = T f/aL . For an irreducible representation R, the second-order Casimir operator C2 is proportional to the identity operator I, which, in turn, is equal to the number operator N in our Fock representation, that is, if T" —> Ta, then I /V 5/,/a . Thus we obtain an important for our further considerations constant of motion N ... [Pg.450]

In the case of quantum field theory the section determines the Hilbert space of states under a certain gauge. This choice of gauge then determines the unitary representation of the Hilbert space. We may then replace the section with the fermion field /, which acts on the Fock space of states. It is then apparent that a gauge transformation A t > A t + 84 is associated with a unitary transform of the fermion field v / > v / I 8 /. The unitary transformation of the fermion... [Pg.444]

Now the door is open for the representation of unitary transformations in Hilbert space required for quantum computing by transformations in Fock space. Consider Hermitian operator H in one-dimensional Hilbert space Tilt has the form Ho + Hi where... [Pg.32]

This work is intended as an attempt to present two essentially different constructions of harmonic oscillator states in a FD Hilbert space. We propose some new definitions of the states and find their explicit forms in the Fock representation. For the convenience of the reader, we also bring together several known FD quantum-optical states, thus making our exposition more self-contained. We shall discuss FD coherent states, FD phase coherent states, FD displaced number states, FD Schrodinger cats, and FD squeezed vacuum. We shall show some intriguing properties of the states with the help of the discrete Wigner function. [Pg.158]

The specification super-operator is common in quantum chemical emd physical literature for linear mappings of Fock-space operators. It is very helpful to transfer this concept to the extended states A, B) and define the application of super-operators by the action on the operators A and B. We will see later how this definition helps for a compeict notation of iterated equations of motion and perturbation expansions. In certain cases, however, the action of a super-operator is fully equivalent to the action of an operator in the Hilbert space Y. The alternative concept of Y-space operators allows to introduce approximations by finite basis set representations of operators in a well-defined and lucid way. [Pg.76]


See other pages where Hilbert space Fock representation is mentioned: [Pg.110]    [Pg.287]    [Pg.339]    [Pg.110]    [Pg.9]    [Pg.31]    [Pg.32]    [Pg.307]    [Pg.101]    [Pg.29]    [Pg.1794]    [Pg.400]    [Pg.447]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Fock space

Hilbert space

Space representation

© 2024 chempedia.info