Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteronuclear nuclear Overhauser principle

NMR has become a standard tool for structure determination and, in particular, for these of Strychnos alkaloids. The last general article in this field was authored by J. Sapi and G. Massiot in 1994 [65] and described the advances in spectroscopic methods applied to these molecules. More recently, strychnine (1) has even been used to illustrate newly introduced experiments [66]. We comment, here, on their advantages and sum up the principles of usual 2D experiments in Fig. (1) and Fig. (2) (COSY Correlation SpectroscopY, TOCSY TOtal Correlation SpectroscopY, NOESY Nuclear Overhauser Enhancement SpectroscopY, ROESY Rotating frame Overhauser Enhancement SpectroscopY, HMQC Heteronuclear Multiple Quantum Coherrence, HMBC Heteronuclear Multiple Bond Correlation). This section updates two areas of research in the field new H and 13C NMR experiments with gradient selection or/and selective pulses, 15N NMR, and microspectroscopy. To take these data into account, another section comments on the structure elucidation of new compounds isolated from Strychnos. It covers the literature from 1994 to early 2000. [Pg.1040]

Judeinstein et al have conducted direct measurement of through-space NMR interactions that provide definitive evidence for spatial proximity of different species. Dipole-dipole interactions can be measured in principle between any NMR active nuclei with heteronuclear correlation experiments in the liquid or solid state." The dipole-dipole interactions decay quickly with the internuclear distances (r ), and are difficult to evaluate for long-range distances and even more difficult when exchange, conformation, or motion phenomena are present. However, the measurement of the nuclear Overhauser method" based on the dipole-dipole-induced crossrelaxation, was proposed to successfully measure intermolecular interactions" and the formation of ion pairs." " In agreement with recent studies, the pulsed field gradient enhanced inverse HOESY (heteronuclear Overhauser enhancement spectroscopy) sequence is usually preferred because it is more sensitive for isotope pairs H- Li and also improves the digital resolution in the H crowded spectrum." ... [Pg.304]


See other pages where Heteronuclear nuclear Overhauser principle is mentioned: [Pg.181]    [Pg.49]    [Pg.166]    [Pg.6]    [Pg.173]    [Pg.276]   
See also in sourсe #XX -- [ Pg.262 , Pg.265 ]




SEARCH



Nuclear Overhauser

Overhauser

© 2024 chempedia.info