Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteronuclear Hartmann-Hahn Spectroscopy

Hartmann-Hahn-Hadamard spectroscopy Heteronuclear Hartmann-Hahn spectroscopy Heteronuclear-homonuclear Hartmann-Hahn spectroscopy... [Pg.240]

Heteronuclear-homonuclear-heteronuclear Hartmann-Hahn spectroscopy Determination of heteronuclear long-range couplings... [Pg.240]

Because of the complexity of the polyether antibiotics tittle progress has been made in stmcture determination by the chemical degradation route. X-ray methods were the techniques most successfully applied for the early stmcture elucidations. Monensin, X206, lasalocid, lysocellin, and salinomycin were included in nineteen distinct polyether x-ray analyses reported in 1983 (190). Use of mass spectrometry (191), and H (192) and nmr (141) are also reviewed. More recently, innovative developments in these latter techniques have resulted in increased applications for stmcture determinations. Eor example, heteronuclear multiple bond connectivity (hmbc) and homonuclear Hartmann-Hahn spectroscopy were used to solve the stmcture of portimicin (14) (193). East atom bombardment mass spectrometry was used in solving the stmctures of maduramicin alpha and co-factors (58). [Pg.172]

Various authors have used different names for Hartmann-Hahn-type experiments that emphasize distinct experimental or theoretical aspects. For example, heteronuclear Hartmann-Hahn transfer in liquids has been called coherence transfer in the rotating frame (Muller and Ernst, 1979), J cross-polarization (JCP Chingas et al., 1981), heteronuclear crosspolarization (Ernst et al., 1991), HEHAHA (heteronuclear Hartmann-Hahn transfer Morris and Gibbs, 1991), and hetero TOCSY (total correlation spectroscopy Brown and Sanctuary, 1991). Homonuclear Hartmann-Hahn transfer has been referred to as TOCSY (Braunschweiler... [Pg.61]

Homonudear Hartmann-Hahn sequences with delays were developed for clean TOCSY experiments (see Section X.B). Examples are delayed MLEV-17 (Griesinger et al., 1988), delayed DIPSI-2 (Cavanagh and Ranee, 1992), and clean CITY (computer-improved total-correlation spectroscopy Briand and Ernst, 1991). The MGS sequences (Schwendinger et al., 1994) are examples of broadband heteronuclear Hartmann-Hahn mbdng sequences with delays and variable rf amplitudes. [Pg.105]

Heteronuclear Hartmann-Hahn sequences also effect homonuclear Hartmann-Hahn transfer, resulting in (heteronuclear and homonuclear) total correlation spectroscopy (TOCSY Bearden and Brown, 1989 Zuiderweg, 1990 Brown and Sanctuary, 1991 Ernst et al., 1991). Simultaneous heteronuclear and homonuclear magnetization transfer can be beneficial in relayed transfer experiments (Gibbs and Morris, 1992 Tokles et al., 1992 Majumdar et al., 1993). However, as pointed out by Ernst et al. [Pg.207]

Heteronuclear multiple-quantum correlation Experiment for tailored correlation spectroscopy of H and H resonances in peptides and proteins Homonuclear Hartmann-Hahn spectroscopy Heteronuclear quadruple-quantum coherence Heteronuelear triple-quantum coherence Heteronuclear single-quantum coherence TOCSY sequences developed at the Indian Institute of Chemical Technology Insensitive nucleus enhancement by polarization transfer... [Pg.240]

NMR is the tool most widely used to identify the structure of triterpenes. Different one-dimension and two-dimension techniques are usually used to study the structures of new compounds. Correlation via H-H coupling with square symmetry ( H- H COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), heteronuclear multiple quantum coherence (HMQC), heteronuclear multiple bond correlation (HMBC), distortionless enhancement by polarisation transfer (DEPT), incredible natural abundance double quantum transfer experiment (INADEQUATE) and nuclear Overhauser effect spectroscopy (NOESY) allow us to examine the proton and carbon chemical shift, carbon types, coupling constants, carbon-carbon and proton-carbon connectivities, and establish the relative stereochemistry of the chiral centres. [Pg.109]

Heteronuclear Multiple Quantum Correlation) and HMBC (Heteronuclear Multiple Bond Correlation). Application of nuclear Overhauser effect (nOe) difference spectroscopy and nuclear Overhauser effect spectroscopy (NOESY) complete the analysis, giving atomic spatial relationships. Sensitivity problems can be alleviated using Homo Hartmann-Hahn spectroscopy (HOHAHA or TOCSY, Total Correlation Spectroscopy). For weak nOes a rotating frame experiment, i.e. ROESY (Rotating frame Overhauser Effect Spectroscopy) is useful, and may be the best experimental method to sequence chains of sugars [5]. [Pg.138]

Coherent transfer experiments can roughly be divided into two classes pulse-interrupted free-precession experiments and Hartmann-Hahn-type experiments (Ernst et al., 1987). Examples of homo- and heteronuclear pulse-interrupted free-precession coherence transfer are COSY (correlation spectroscopy Aue et al., 1976), RELAY (relayed correlation spectroscopy Wagner, 1983), and INEPT (insensitive nucleus enhancement by polarization transfer) transfer steps (Morris and Freeman, 1979 Burum... [Pg.60]

General symmetry principles for rotor-synchronized pulse sequences in MAS solid-state NMR have been presented. The synunetry theory has been extended to the case of generalized Hartmann-Hahn sequences, in which rotor-synchronized r.f. irradiation is applied simultaneously to two isotopic spin species. The symmetry theory has been used to design pulse sequences which implement heteronuclear dipolar recoupling at the same time as decoupling homonuclear spin-spin interactions, and which also suppress CSAs. Experimental demonstrations of heteronuclear 2D correlation spectroscopy, heteronuclear MQ spectroscopy, and the estimation of intemuclear dipolar couplings have been given. [Pg.228]


See other pages where Heteronuclear Hartmann-Hahn Spectroscopy is mentioned: [Pg.268]    [Pg.63]    [Pg.100]    [Pg.205]    [Pg.373]    [Pg.268]    [Pg.170]    [Pg.375]    [Pg.268]    [Pg.63]    [Pg.100]    [Pg.205]    [Pg.373]    [Pg.268]    [Pg.170]    [Pg.375]    [Pg.176]    [Pg.219]    [Pg.224]    [Pg.240]    [Pg.176]    [Pg.67]    [Pg.259]    [Pg.228]    [Pg.267]    [Pg.1044]    [Pg.67]    [Pg.305]    [Pg.574]    [Pg.506]    [Pg.492]    [Pg.301]   


SEARCH



Hahne

Hartmann-Hahn

Hartmann-Hahn spectroscopy

© 2024 chempedia.info