Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocycles, tricyclic

Takamizawa et al. developed a general ring-expansion reaction of heterocycles that, applied to thiazolium salts, yields 1,4-thiazines (496, 497) thiamine (220) reacts with dialkyl acylphosphonates (221) to give the tricyclic 1,4-thiazine (222) (498), which is easily hydrolyzed to dihydro-1,4-thiazinone (223) (499) (Scheme 106). In the case of thiazolium slats containing no functional groups (224), 1,4-thiazine derivatives (226) were directly obtained in fairly good yields (Scheme 107). [Pg.139]

Dipoles can also be built into heterocyclic systems, and though of limited use, they may also be utilized for the synthesis of [5,6] ring-fused systems. Reaction of 2 3H)-benzothiazolethione with (chlorocarbonyl)phenylketene in warm anhydrous benzene gave the heteroaromatic betaine (416). On heating with DMAD in boiling toluene the tricyclic pyridinone (418) was obtained, presumably by elimination of COS from the intermediate cycloadduct (417) (80JOC2474). [Pg.151]

The hydrolysis proceeds via a diazafulvene intermediate, which in these systems can be formed without a total loss of aromatic character of the tricycle. It is tempting to suggest that, using this reasoning, linearly annelated 2-trifluoromethyl-imidazo[4,5-g]quinoline should be inert toward alkaline hydrolysis, as formation of the diazafulvene intermediate will again involve total dearomatization of the heterocyclic system (Scheme 36). [Pg.239]

M. P. Groziak and F. G. Jacobs, Tricyclic Systems Central Carbo-cyclic Ring with Fused Five- and Six-membered Rings Chapter 7.22 pp. 875-919 in Katritzky A. R., Rees Ch. W., and Scriven E. F. V, Comprehensive Heterocyclic Chemistry II A review of the Literature 1982-1995, Vol. 7 Fused Five- and Six-membered Rings without Ring Junction Heteroatoms, vol. ed. Ramsden Ch. A., Elsevier Science, Oxford, 1996. [Pg.268]

The tricyclic compounds 35 are among the most studied six-member Te-containing heterocycles with two heteroatoms in the ring. The first representive... [Pg.15]

The Diels-Alder methodology can also be applied in the synthesis of tricyclic heterocycles, as was demonstrated by reactions of 2-(2-trimethylsilylethynylphenyl-X)pyrimidines (X = 0, S, NCOMe, CHj, CO). They are converted in good yield on heating at 160°C into tricyclic annelated pyridines (89T6511) (Scheme 37). A similar reaction was found with the 2-(2-allylphenoxy)pyrimidines affording azaxanthenes (79H665) (Scheme 37). [Pg.58]

The fusion of four membered-heterocycles with two heteroatoms onto face a of the quinoline offers two isomeric combinations of the tricyclic ring system l,2-heterocyclo[2,3-a]quinoline and l,3-heterocyclo[3,2-a]quinoline. The later one of these two ring systems is the only one that examples of it namely, l,3-thiazeto[3,2-a]quinoline have been reported. Moreover, examples of those fused on faces ij or j are not known (Fig. 3). [Pg.76]

The importance of the 1,3-dipolar cycloaddition reaction for the synthesis of five-membered heterocycles arises from the many possible dipole/dipolarophile combinations. Five-membered heterocycles are often found as structural subunits of natural products. Furthermore an intramolecular variant makes possible the formation of more complex structures from relatively simple starting materials. For example the tricyclic compound 10 is formed from 9 by an intramolecular cycloaddition in 80% yield ... [Pg.76]

Tricyclic Species with One Six- and Two Five-Membered Heterocyclic... [Pg.246]

According to a hypothesis launched by Larionov et al in the 1960s, some new nitrogen mustard derivatives were developed. They contain metabolites and heterocyclic structures as carriers of the cytotoxic chloroethylamine groups. By this way the synthesis of aliylating metabolites started melphalan (sarcolysine) as L- or DL-phenylalanine derivative prospidine with a tricyclic piperazine moiety and chlorambucil as butyric acid derivative. It was proven that each alkylating metabolite has its own spectrum of selective antitumor activity. [Pg.54]

As shown by Heindel and Corley (1979), ring closure also takes place if the nucleophilic nitrogen is part of a heterocycle, as in the diazotization of 5-amino-3-methyl-2-H-l,2,4-benzothiadiazine-l, 1-dioxide (6.50). In the tricyclic compound 6.51 formed initially, the thiadiazinedioxide ring is opened rapidly in water, forming 1-acetyl-7-aminosulfonyl-l-i/-benzo-l,2,3-triazole (6.52). [Pg.133]

The synthesis of highly substituted rigid tricyclic nitrogen heterocycles via a tandem four-component condensation (the Ugi reaction)/intramolecular Diels-Alder reaction was investigated in both solution and solid phase [24]. The Ugi reaction in MeOH (Scheme 4.2) involves the condensation of furylaldehydes 17, benzylamine 18, benzyl isocyanide 19 and maleic or fumaric acid derivatives 20, and provides the triene 21 which immediately undergoes an intramolecular Diels-Alder reaction, affording the cycloadduct 22 in a diastereoisomeric mixture with high yield. [Pg.149]

The reaction of the a-bromo aldoxime 52e (R = R = Me) with unsaturated alcohols has been extended to the heterocyclic systems furfuryl alcohols and 2-thiophene methanol [29b]. The furanyl and thiophenyl oximes 63a-c were treated with NaOCl and the resulting heterocyclic nitrile oxides were found to undergo spontaneous intramolecular dipolar cycloaddition to produce the unsaturated tricyclic isoxazolines 64a-c in high yield (Eq. 5). In these cases, the heterocyclic ring acts as the dipolarophile with one of the double bonds adding to the nitrile oxide [30]. [Pg.10]

Dipolar cycloaddition of azides with olefins provides a convenient access to triazolines, cyclic imines, and aziridines and hence is a valuable technique in heterocyclic synthesis. For instance, tricyclic -lactams 273 - 276 have been synthesized using the intramolecular azide-olefin cycloaddition (lAOC) methodology (Scheme 30) [71]. [Pg.39]

Partially hydrogenated indoles are useful heterocycles. They can easily be obtained by a domino Diels-Alder/Schmidt process, as described by Aube and coworkers [30]. An example is the reaction of the enone 4-90 with a butadiene 4-91 in the presence of the Lewis acid MeAlCl2, which led to tricyclic compounds as 4-93 via 4-92 in over 80% yield (Scheme 4.20). The procedure has also been used for the synthesis of pyrroloisoquinolones, azepinoindolones, and perhydroindoles. [Pg.292]

Although 1,3,2-diazaphospholenium cations are usually prepared from neutral NHPs or 1,3,2-diazaphospholes via Lewis-acid induced substituent abstraction or A-alkylation, respectively (cf. Sect. 3.1.2), the group of Cowley was the first to describe a direct conversion of a-diimines into cationic heterocycles by means of a reaction that can be described as capture of a P(I) cation by diazabutadiene via [4+1] cycloaddition [31] (Scheme 4). The P(I) moiety is either generated by reduction of phosphorus trihalides with tin dichloride in the presence of the diimine [31] or, even more simply, by spontaneous disproportionation of phosphorus triiodide in the presence of the diimine [32], The reaction is of particular value as it provides a straightforward access to annulated heterocyclic ring systems. Thus, the tricyclic structure of 11 is readily assembled by addition of a P(I) moiety to an acenaphthene-diimine [31], and the pyrido-annulated cationic NHP 12 is generated by action of appropriate... [Pg.70]

Diazaphospholes are known to undergo facile 1,3-dipolar cycloaddditions with a variety of dipoles [2, 4, 7, 98], During recent years, some interesting [2+3] cycloaddition reactions have been reported. 2-Acyl-[l,2,3]diazaphospholes 6 were reported to undergo [2+3] cycloaddition with diazocumulene 92, the minor equilibrium isomer of a-diazo-a-silyl ketones 91, to form a bicyclic cycloadduct 93 (Scheme 29). Thermolysis of the cycloadduct results in the formation of tricyclic phosphorus heterocycle 94, which can be explained due to the possibility of two parallel reactions of cycloadduct. On the one hand, extrusion of molecular nitrogen from 93... [Pg.196]

An efficient synthesis of rigid tricyclic (5 5 5) nitrogen heterocycles 64 has been achieved via sequential and tandem Ugi/intramolecular Diels-Alder (IMDA) cycloaddition of pyrrole derivatives <2004JOC1207> and the trienes 477 were prepared by the acylaton of amines 475 with the anhydride 476. The amines 475 were in turn prepared starting from pyrrole-2-carbaldehyde. The triene 477 on heating in toluene at 80 °C for 15 h underwent the IMDA to afford the tricyclic compound 64 as a single diastereomer in quantitative yield. The sterically bulky N-substitutent on the triene 477 promoted cycloaddition under milder condition at 65 °C in toluene to provide the tricyclic compound 64 in quantitative yield (Scheme 108). [Pg.701]


See other pages where Heterocycles, tricyclic is mentioned: [Pg.720]    [Pg.720]    [Pg.240]    [Pg.720]    [Pg.720]    [Pg.240]    [Pg.226]    [Pg.184]    [Pg.356]    [Pg.229]    [Pg.241]    [Pg.253]    [Pg.264]    [Pg.42]    [Pg.57]    [Pg.72]    [Pg.3]    [Pg.73]    [Pg.202]    [Pg.213]    [Pg.23]    [Pg.151]    [Pg.250]    [Pg.171]    [Pg.186]    [Pg.250]    [Pg.257]    [Pg.27]    [Pg.508]    [Pg.5]    [Pg.816]    [Pg.29]   
See also in sourсe #XX -- [ Pg.386 ]




SEARCH



Tricyclic and Heterocyclic Antidepressants

Tricyclic sulfur heterocycles

© 2024 chempedia.info