Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitration heterocycles

Correlation of Heterocyclic Nitration with Localization Energy Calculations0... [Pg.36]

There is available a large amount of qualitative information about the nitration of heterocyclic compounds, but quantitative information is still not very extensive, being limited to nitrogen systems. [Pg.190]

The nitration of phenylpyridines and related compounds has attracted attention for a long time, and measurements of isomer proportions have been made for several compounds of this type. Nitration occurs in the phenyl ring. For 2-phenylpyridine and 2-phenylpyridine i-oxide measurements of the dependence of rate of nitration upon acidity in 75-81 % sulphuric acid at 25 °C show that both compounds are nitrated as their cations (table 8.1). The isomer distribution did not depend significantly upon the acidity, and by comparison with the kinetic data for quinolinium ( 10.4.2) the partial rate factors illustrated below were obtained.They should be compared with those for the nitration of 2-nitrobiphenyl ( 10.1). The protonated heterocyclic groups are much... [Pg.206]

The first quantitative studies of the nitration of quinoline, isoquinoline, and cinnoline were made by Dewar and Maitlis, who measured isomer proportions and also, by competition, the relative rates of nitration of quinoline and isoquinoline (1 24-5). Subsequently, extensive kinetic studies were reported for all three of these heterocycles and their methyl quaternary derivatives (table 10.3). The usual criteria established that over the range 77-99 % sulphuric acid at 25 °C quinoline reacts as its cation (i), and the same is true for isoquinoline in 71-84% sulphuric acid at 25 °C and 67-73 % sulphuric acid at 80 °C ( 8.2 tables 8.1, 8.3). Cinnoline reacts as the 2-cinnolinium cation (nia) in 76-83% sulphuric acid at 80 °C (see table 8.1). All of these cations are strongly deactivated. Approximate partial rate factors of /j = 9-ox io and /g = i-o X io have been estimated for isoquinolinium. The unproto-nated nitrogen atom of the 2-cinnolinium (ina) and 2-methylcinno-linium (iiiA) cations causes them to react 287 and 200 more slowly than the related 2-isoquinolinium (iia) and 2-methylisoquinolinium (iii)... [Pg.208]

When activating substituents are present in the benzenoid ring, substitution usually becomes more facile and occurs in accordance with predictions based on simple valence bond theory. When activating substituents are present in the heterocyclic ring the situation varies depending upon reaction conditions thus, nitration of 2(177)-quinoxalinone in acetic acid yields 7-nitro-2(177)-quinoxalinone (21) whereas nitration with mixed acid yields the 6-nitro derivative (22). The difference in products probably reflects a difference in the species being nitrated neutral 2(177)-quinoxalinone in acetic acid and the diprotonated species (23) in mixed acids. [Pg.163]

No simple electrophilic substitution, for example nitrosation, nitration, sulfonation or halogenation of a C—H bond, has so far been recorded in the pteridine series. The strong 7T-electron deficiency of this nitrogen heterocycle opposes such electrophilic attack, which would require a high-energy transition state of low stability. [Pg.286]

In compounds with a fused benzene ring, electrophilic substitution on carbon usually occurs in the benzenoid ring in preference to the heterocyclic ring. Frequently the orientation of substitution in these compounds parallels that in naphthalene. Conditions are often similar to those used for benzene itself. The actual position attacked varies compare formulae (341)-(346) where the orientation is shown for nitration sulfonation is usually similar for reasons which are not well understood. [Pg.85]

In the section dealing with electrophilic attack at carbon some results on indazole homocyclic reactivity were presented nitration at position 5 (Section 4.04.2.1.4(ii)), sulfon-ation at position 7 (Section 4.04.2.1.4(iii)) and bromination at positions 5 and 7 (Section 4.04.2.1.4(v)). The orientation depends on the nature (cationic, neutral or anionic) of the indazole. Protonation, for instance, deactivates the heterocycle and directs the attack towards the fused benzene ring. A careful study of the nitration of indazoles at positions 2, 3, 5 or 7 has been published by Habraken (7UOC3084) who described the synthesis of several dinitroindazoles (5,7 5,6 3,5 3,6 3,4 3,7). The kinetics of the nitration of indazole to form the 5-nitro derivative have been determined (72JCS(P2)632). The rate profile at acidities below 90% sulfuric acid shows that the reaction involves the conjugate acid of indazole. [Pg.259]

Unloaded silica does not recover HPA from aqueous solution. The surface of silica gel modified with quarternary ammonium salts (QAS) gets anion-exchange properties. The aim of the work is the elaboration of solid-phase reagents on the base of ion associate of HPA with QAS immobilized onto silica surface for the determination of phosphoms and organic reductants. Heterocyclic (safranine and lucigenine) and aliphatic (trinonyloctadecyl ammonium iodide and tetradecyl ammonium nitrate) compounds have been examined as QAS. [Pg.60]

The sole known example of electrophilic substitution in quinazoline is nitration. Quinazoline gives 6-nitroquinazoline with fuming nitric acid in concentrated sulfuric acid. No oxidation of the heterocyclic ring can occur under these conditions because the hydrated cation (see Section IIA>4) is not present. This substitution is in agreement with theoretical calculation [see (2) and reference 36]. [Pg.264]

Transformations of nitro compounds, nitrones, nitrates, hydroxylamines, and amino-A-oxides into heterocycles 98SL939. [Pg.217]

The majority of analgesics can be classified as either central or peripheral on the basis of their mode of action. Structural characteristics usually follow the same divisions the former show some relation to the opioids while the latter can be recognized as NSAlD s. The triamino pyridine 17 is an analgesic which does not seem to belong stmcturally to either class. Reaction of substituted pyridine 13 (obtainable from 12 by nitration ) with benzylamine 14 leads to the product from replacement of the methoxyl group (15). The reaction probably proceeds by the addition elimination sequence characteristic of heterocyclic nucleophilic displacements. Reduction of the nitro group with Raney nickel gives triamine 16. Acylation of the product with ethyl chlorofor-mate produces flupirtine (17) [4]. [Pg.102]

The chemistry of pyrrole is similar to that of activated benzene rings. In general, however, the heterocycles are more reactive toward electrophiles than benzene rings are, and low temperatures are often necessary to control the reactions. Halogenation, nitration, sulfonation, and Friedel-Crafts acylation can all be accomplished. For example ... [Pg.947]


See other pages where Nitration heterocycles is mentioned: [Pg.187]    [Pg.23]    [Pg.35]    [Pg.187]    [Pg.178]    [Pg.50]    [Pg.580]    [Pg.187]    [Pg.23]    [Pg.35]    [Pg.187]    [Pg.178]    [Pg.50]    [Pg.580]    [Pg.207]    [Pg.213]    [Pg.214]    [Pg.57]    [Pg.133]    [Pg.549]    [Pg.819]    [Pg.825]    [Pg.848]    [Pg.873]    [Pg.894]    [Pg.27]    [Pg.746]    [Pg.321]    [Pg.96]    [Pg.110]    [Pg.243]    [Pg.956]    [Pg.311]   
See also in sourсe #XX -- [ Pg.696 ]




SEARCH



Aromatic heterocycles nitrations, nitric acid

Five-membered heterocycles nitration

Heterocycles nitrations, nitric acid

Heterocycles silver© nitrate

Heterocycles, acylation nitration

Heterocycles, phenyl, nitration

Heterocycles, phenyl-substituted, nitration

Nitrate esters from the ring-opening of strained oxygen heterocycles

Nitrate esters heterocycles

Nitration of aromatic and heterocyclic compounds

Nitration of heterocycles

Nitration of phenyl-substituted heterocycles

© 2024 chempedia.info