Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocycles access

The second class of benzo-fused heterocycles accessible from benzofuroxans are benzimidazole oxides. In this case only one carbon from the co-reactant is incorporated in the product. With primary nitroalkanes 2-substituted l-hydroxybenzimidazole-3-oxides (46) are formed via displacement of nitrite, and / -sulfones behave similarly. The nitrile group of a-cyanoacetamides is likewise eliminated to alford 2-amide derivatives (46 R = CONRjX and the corresponding esters are formed in addition to the expected quinoxaline dioxides from acetoacetate esters. Under similar conditions secondary nitroalkyl compounds afford 2,2-disubstituted 2//-benzimidazole-1,3-dioxides (47). Benzimidazoles can also result from reaction of benzofuroxans with phosphorus ylides <86T3631>, nitrones (85H(23)1625>, and diazo compounds <75TL3577>. [Pg.245]

Another type of heterocycle accessible from sugars by a one-step reaction was investigated by Zemplen after a German patent reported that D-glucose reacts with thiocyanate to give a compound thought to be D-gluconothiolactone.136 He soon established that the product... [Pg.379]

Fig. 14 Some representative large heterocycles accessible from (3-lactam compounds... Fig. 14 Some representative large heterocycles accessible from (3-lactam compounds...
A field of such importance and intrinsic difficulty should be made as readily accessible as possible, and the lack of a modern detailed and comprehensive presentation of heterocyclic chemistry is therefore keenly felt. It is the intention of the present senes to fill this gap by expert presentations of the various branches of heterocyclic chemistry. The subdivisions have been designed to cover the field in its entirety by monographs which reflect the importance and the interrelations of the various compounds, and accommodate the specific interests of the authors. [Pg.597]

In order to continue to make heterocyclic chemistry as readily accessible as possible, new editions are planned for those areas where the respective volumes in the first edition have become obsolete by overwhelming progress. If, however, the changes are not too great so that the first editions can be brought up-to-date by supplementary volumes, supplements to the respective volumes will be published in the first editions. [Pg.597]

Since diazaquinones are among the most powerful dienophiles, they undergo [4+2] cycloaddition (Diels-Alder) reactions with a great variety of dienes to give various heterocyclic systems accessible with difficulty by other methods. Diazaquinone reacts with butadiene and substituted butadienes, carbocyclic and heterocyclic dienes, 1-vinylcycloalkenes, polyaromatic compounds and vinylaromatic compounds to afford bicyclic and polycyclic bridgehead diaza systems, including diazasteroids (Scheme 56). [Pg.38]

Examination of the pyrazino[2,3-rf]pyrimidine structure of pteridines reveals two principal pathways for the synthesis of this ring system, namely fusion of a pyrazine ring to a pyrimidine derivative, and annelation of a pyrimidine ring to a suitably substituted pyrazine derivative (equation 76). Since pyrimidines are more easily accessible the former pathway is of major importance. Less important methods include degradations of more complex substances and ring transformations of structurally related bicyclic nitrogen heterocycles. [Pg.309]

Most ring syntheses of this type are of modern origin. The cobalt or rhodium carbonyl catalyzed hydrocarboxylation of unsaturated alcohols, amines or amides provides access to tetrahydrofuranones, pyrrolidones or succinimides, although appreciable amounts of the corresponding six-membered heterocycle may also be formed (Scheme 55a) (73JOM(47)28l). Hydrocarboxylation of 4-pentyn-2-ol with nickel carbonyl yields 3-methylenetetrahy-drofuranone (Scheme 55b). Carbonylation of Schiff bases yields 2-arylphthalimidines (Scheme 55c). The hydroformylation of o-nitrostyrene, subsequent reduction of the nitro group and cyclization leads to the formation of skatole (Scheme 55d) (81CC82). [Pg.120]

The direct combination of selenium and acetylene provides the most convenient source of selenophene (76JHC1319). Lesser amounts of many other compounds are formed concurrently and include 2- and 3-alkylselenophenes, benzo[6]selenophene and isomeric selenoloselenophenes (76CS(10)159). The commercial availability of thiophene makes comparable reactions of little interest for the obtention of the parent heterocycle in the laboratory. However, the reaction of substituted acetylenes with morpholinyl disulfide is of some synthetic value. The process, which appears to entail the initial formation of thionitroxyl radicals, converts phenylacetylene into a 3 1 mixture of 2,4- and 2,5-diphenylthiophene, methyl propiolate into dimethyl thiophene-2,5-dicarboxylate, and ethyl phenylpropiolate into diethyl 3,4-diphenylthiophene-2,5-dicarboxylate (Scheme 83a) (77TL3413). Dimethyl thiophene-2,4-dicarboxylate is obtained from methyl propiolate by treatment with dimethyl sulfoxide and thionyl chloride (Scheme 83b) (66CB1558). The rhodium carbonyl catalyzed carbonylation of alkynes in alcohols provides 5-alkoxy-2(5//)-furanones (Scheme 83c) (81CL993). The inclusion of ethylene provides 5-ethyl-2(5//)-furanones instead (82NKK242). The nickel acetate catalyzed addition of r-butyl isocyanide to alkynes provides access to 2-aminopyrroles (Scheme 83d) (70S593). [Pg.135]

Use of mesoionic ring systems for the synthesis of five-membered heterocycles with two or more heteroatoms is relatively restricted because of the few readily accessible systems containing two heteroatoms in the 1,3-dipole. They are particularly suited for the unambiguous synthesis of pyrazoles as the azomethine imine is contained as a masked 1,3-dipole in the sydnone system. An attractive feature of their use is that the precursor to the mesoionic system may be used in the presence of the cyclodehydration agent and the dipolarophile, avoiding the necessity for isolating the mesoionic system. [Pg.149]

Many rearrangements forming C—C bonds have been applied to the preparation of heterocyclics. The Cope rearrangement is prominent, and an example is shown in Scheme 8. The staring material usually most accessible is an alkene, which is converted to the required cyclopropane at some stage before the rearrangement step. [Pg.35]

The electrochemistry of S-N and Se-N heterocycles has been reviewed comprehensively. The emphasis is on the information that electrochemical studies provide about the redox properties of potential neutral conductors. To be useful as a molecular conductor the 4-1, 0, and -1 redox states should be accessible and the neutral radical should lie close to the centre of the redox spectrum. The chalcogen-nitrogen heterocycles that have been studied in most detail from this viewpoint... [Pg.42]

The three possibilities of synthesizing a C5 chain, namely, C2 +Ci + C2. C2 -t C2 -I- Cl, or Cl + C3 + Cl, lead to pyrylium salts having identical substituents in positions 2 and 4 in the second case, or 2 and 6 in the first and third cases. Despite this limitation, such syntheses are very convenient because they make the pyrylium salts easily accessible (more so than other six-membered heterocyclic aromatics) from aliphatic starting materials. [Pg.301]

Conditions more accessible to rate measurements and, possibly, more favorable to a normal course of substitution (Section II, A) make the use of activated compounds such as nitro- and aza-sub-stituted derivatives desirable. In both cases, the activated halogeno-substituted five-membered ring heterocycle is also more reactive than a similarly activated six-membered ring compound. This... [Pg.348]

Whereas the fulvalenes 1-6 are relatively unstable hydrocarbons and therefore largely of theoretical interest, their heteroatom analogs demand considerable attention in synthetic chemistry and material sciences. Tlie general principle of heterocyclic chemistry to relate heterocyclic compounds to carbocyclic ones was the driving force for the synthesis and their application to heteroful-valenes. Numerous heterocyclic derivatives iso-rr-electronic with, for example, heptafulvalene 3 were accessible in which pairs of carbon atoms linked by double bonds were replaced by heteroatoms capable of contributing two tt-electrons. By this principle, the well-known tetrathiafulvalene and its derivatives have been synthesized successfully (Scheme 2). [Pg.116]

Stereocontrolled Additions to Dihydropyridines and Tetrahydropyridines Access to N-Heterocyclic Compounds Related to Natural Products... [Pg.269]

These results show that inverse Diels-Alder reactions of pyrimidines open an easy access to a number of differently substituted pyridines and especially to compounds, in which the carbocyclic ring and the heterocyclic rings are annelated on the b position of pyridine. An interesting illustrating example... [Pg.52]

Other advances include the construction of seven- and nine-membered rings via the analogous [4-1-3] and [6-1-3] cycloadditions with dienes and trienes respectively. Heterocycles, such as tetrahydrofurans and pyrrolidines, are accessible using carbonyl compounds and imines as substrates. The following discussion is organized around these recent discoveries. It serves to illustrate the versatility and the high degree of selectivity which are some of the distinctive features of the Pd-TMM chemistry. [Pg.61]


See other pages where Heterocycles access is mentioned: [Pg.355]    [Pg.131]    [Pg.475]    [Pg.362]    [Pg.355]    [Pg.1730]    [Pg.355]    [Pg.131]    [Pg.475]    [Pg.362]    [Pg.355]    [Pg.1730]    [Pg.8]    [Pg.168]    [Pg.104]    [Pg.11]    [Pg.12]    [Pg.12]    [Pg.18]    [Pg.87]    [Pg.91]    [Pg.48]    [Pg.45]    [Pg.280]    [Pg.537]    [Pg.201]    [Pg.363]    [Pg.105]    [Pg.213]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



© 2024 chempedia.info