Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hephaestin

Figure 50-4. Absorption of iron. is converted to Fe + by ferric reductase, and Fe " is transported into the enterocyte by the apicai membrane iron transporter DMTl. Fieme is transported into the enterocyte by a separate heme transporter (HT), and heme oxidase (FiO) reieases Fe from the heme. Some of the intraceiiuiar Fe + is converted to Fe + and bound by ferritin. The remainder binds to the basoiaterai Fe + transporter (FP) and is transported into the biood-stream, aided by hephaestin (FiP). in piasma, Fe + is bound to the iron transport protein transferrin (TF). (Reproduced, with permission, from Ganong WF Review of Medical Physiology, 21 st ed. McGraw-Hill, 2003.)... Figure 50-4. Absorption of iron. is converted to Fe + by ferric reductase, and Fe " is transported into the enterocyte by the apicai membrane iron transporter DMTl. Fieme is transported into the enterocyte by a separate heme transporter (HT), and heme oxidase (FiO) reieases Fe from the heme. Some of the intraceiiuiar Fe + is converted to Fe + and bound by ferritin. The remainder binds to the basoiaterai Fe + transporter (FP) and is transported into the biood-stream, aided by hephaestin (FiP). in piasma, Fe + is bound to the iron transport protein transferrin (TF). (Reproduced, with permission, from Ganong WF Review of Medical Physiology, 21 st ed. McGraw-Hill, 2003.)...
Figure 8.3 A model of iron transport across the intestine. Reduction of ferric complexes to the ferrous form is achieved by the action of the brush border ferric reductase. The ferrous form is transported across the brush border membrane by the proton-coupled divalent cation transporter (DCT1) where it enters an unknown compartment in the cytosol. Ferrous iron is then transported across the basolateral membrane by IREG1, where the membrane-bound copper oxidase hephaestin (Hp) promotes release and binding of Fe3+ to circulating apotransferrin. Except for hephaestin the number of transmembrane domains for each protein is not shown in full. Reprinted from McKie et al., 2000. Copyright (2000), with permission from Elsevier Science. Figure 8.3 A model of iron transport across the intestine. Reduction of ferric complexes to the ferrous form is achieved by the action of the brush border ferric reductase. The ferrous form is transported across the brush border membrane by the proton-coupled divalent cation transporter (DCT1) where it enters an unknown compartment in the cytosol. Ferrous iron is then transported across the basolateral membrane by IREG1, where the membrane-bound copper oxidase hephaestin (Hp) promotes release and binding of Fe3+ to circulating apotransferrin. Except for hephaestin the number of transmembrane domains for each protein is not shown in full. Reprinted from McKie et al., 2000. Copyright (2000), with permission from Elsevier Science.
In the enterocyte as it enters the absorptive zone near to the villus tips, dietary iron is absorbed either directly as Fe(II) after reduction in the gastrointestinal tract by reductants like ascorbate, or after reduction of Fe(III) by the apical membrane ferrireductase Dcytb, via the divalent transporter Nramp2 (DCT1). Alternatively, haem is taken up at the apical surface, perhaps via a receptor, and is degraded by haem oxygenase to release Fe(II) into the same intracellular pool. The setting of IRPs (which are assumed to act as iron biosensors) determines the amount of iron that is retained within the enterocyte as ferritin, and that which is transferred to the circulation. This latter process is presumed to involve IREG 1 (ferroportin) and the GPI-linked hephaestin at the basolateral membrane with incorporation of iron into apotransferrin. (b) A representation of iron absorption in HFE-related haemochromatosis. [Pg.250]

Once absorbed, iron becomes part of the cellular iron pool, either stored as ferritin or transported across the basolateral membrane of the enterocyte into the circulation by an iron transporter called ferroportin 1. Hephaestin, a basolateral membrane ferroxidase, oxidizes the ferrous iron back to its ferric form, thus completing the absorption process (Harrison and Bacon, 2003). [Pg.337]

Based on present sequence data, known or likely ferroxidase enzymes can be identihed in several eukaryotes. These enzymes are listed in Table 11. All are multicopper oxidases, by sequence homology at least. In mammals, they include ceruloplasmin and, most likely, hephaestin (Hp), although only mouse Hp (mHp) has been characterized at this time (Vulpe et al., 1999). The alignments in Fig. 5A show that mHp is essentially... [Pg.229]

Fet5p and hephaestin are type 1 membrane proteins both are found associated with vesicular compartments. Fet5p is localized to the vacuolar membrane in Sa. cerevisiae while hephaestin appears to be associated with a vesicular compartment within the villus cells of the small intestine. These two (apparent) ferroxidases share another similarity neither is... [Pg.235]

Fig. 6. Cartoon depicting the cell locale and targeting of Fet3p and Cp in comparison to FetSp and hephaestin. Fig. 6. Cartoon depicting the cell locale and targeting of Fet3p and Cp in comparison to FetSp and hephaestin.
The second class consists of multidomain blue copper proteins composed of exclusively two or more BCB domains and includes nitrite reductase (Section IV, E), multicopper blue oxidases such as laccase, ascorbate oxidase, ceruloplasmin, and hephaestin (Section VII), and some sequences found in extreme halophilic archaea (see Section V, E). [Pg.273]

Multicopper blue oxidases are synthesized as a single polypeptide chain, which is composed of three BCB domains in the case of laccases (LC) and ascorbate oxidases (AO) and six such domains in ceruloplasmin (CP) and hephaestin (HP). Structurally they are arranged in a triangular manner. These enzymes, along with heme-copper oxidases (cytochrome c oxidases and quinol-oxidases) and a cyanide-resistant alternative oxidase found in mitochondria of plants and fungi, are the only known enzymes capable of catalyzing four-electron reduction of dioxygen to water. In the... [Pg.312]

A second member of the ceruloplasmin family multicopper oxidases with six BCB domains was recently identified as the causative agent of sex-linked anemia (sla) in mice (Vulpe et al., 1993). It was named hephaes-tin and shown to be expressed mostly in the small intestine and the colon, where it is presumably involved in gastrointestinal iron uptake. Hephaes-tin displays a high level of sequence identity to ceruloplasmin and differs from it only by an additional C-terminal transmembrane domain, which anchors the protein to the cell membrane. A 582-nucleotide in-frame deletion in the mRNA for hephaestin sla mice has been identified compared to normal animals. The mice with such a mutation are unable to release iron from enterocytes (intestinal epithelial cells) into the circulation, which results in severe anemia. The GPI-anchored form of ceruloplasmin could potentially also mediate similar cellular iron efflux in the central nervous system. There is a transferrin-independent iron uptake system that requires Fe(III) to be reduced to Fe(II) at the cell surface for uptake to occur (DeSilva et al., 1996). Ceruloplasmin would oxidize Fe and prevent its uptake by this mechanism. Briefly, the role of ceruloplasmin is most likely to prevent excessive intracellular iron accumulation by tightly controlling iron efflux and inhibiting its uptake. [Pg.321]


See other pages where Hephaestin is mentioned: [Pg.585]    [Pg.237]    [Pg.238]    [Pg.241]    [Pg.252]    [Pg.253]    [Pg.330]    [Pg.340]    [Pg.350]    [Pg.122]    [Pg.127]    [Pg.338]    [Pg.221]    [Pg.229]    [Pg.229]    [Pg.229]    [Pg.230]    [Pg.230]    [Pg.230]    [Pg.230]    [Pg.230]    [Pg.230]    [Pg.230]    [Pg.230]    [Pg.230]    [Pg.234]    [Pg.235]    [Pg.236]    [Pg.237]    [Pg.238]    [Pg.239]    [Pg.263]    [Pg.269]    [Pg.271]    [Pg.275]    [Pg.276]    [Pg.279]    [Pg.313]    [Pg.320]   
See also in sourсe #XX -- [ Pg.122 , Pg.127 ]

See also in sourсe #XX -- [ Pg.3 , Pg.501 ]

See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Hephaestin characterization

Hephaestin function

Multicopper oxidases hephaestin

© 2024 chempedia.info