Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heme proteins myoglobin

Red fibers provide for their ATP requirements mainly (but not exclusively) from fatty acids, which are broken down via 3-oxidation, the tricarboxylic acid cycle, and the respiratory chain (right part of the illustration). The red color in these fibers is due to the monomeric heme protein myoglobin, which they use as an O2 reserve. Myoglobin has a much higher af nity for O2 than hemoglobin and therefore only releases its O2 when there is a severe drop in O2 partial pressure (cf p.282). [Pg.336]

In 1993, we reported [19] reversible electron transfer between electrodes and the iron heme protein myoglobin imbedded in cast multi-lameUar liquid crystal films of didodecyldimethylammonium bromide (DDAB). Heretofore, reversible electron transfer from electrodes to myoglobin in solution had been accomplished only for highly purified myoglobin solutions on specially cleaned indium tin oxide electrodes [20,21]. If enhanced electron transfer for proteins in surfactant or lipid films were to prove general, it might help solve longstanding problems in protein electrochemistry. [Pg.177]

The iron heme protein myoglobin (Mb, MW 17000) is essential for oxygen storage and transport in mammalian... [Pg.178]

PSS-SG composite film was tested for sorption of heme proteins hemoglobin (Hb) and myoglobin (Mb). The peroxidaze activity of adsorbed proteins were studied and evaluated by optical and voltammetric methods. Mb-PSS-SG film on PG electrode was shown to be perspective for detection of dissolved oxygen and hydrogen peroxide by voltammetry with linear calibration in the range 2-30 p.M, and detection limit -1.5 p.M. Obtained composite films can be modified by different types of biological active compounds which is important for the development of sensitive elements of biosensors. [Pg.306]

Fig. 3.1 The molecular structure of heme b (also called protoporphyrin IX), the active center of myoglobin, hemoglobin, catalases, and peroxidases, among other heme proteins. [Pg.75]

The kinetics of reactions of NO with ferri- and ferro-heme proteins and models under ambient conditions have been studied by time-resolved spectroscopic techniques. Representative results are summarized in Table I (22-28). Equilibrium constants determined for the formation of nitrosyl complexes of met-myoglobin (metMb), ferri-cytochrome-c (Cyt111) and catalase (Cat) are in reasonable agreement when measured both by flash photolysis techniques (K= konlkQff) and by spectroscopic titration in aqueous media (22). Table I summarizes the several orders of magnitude range of kon and kQs values obtained for ferri- and ferro-heme proteins. Many k0f[ values were too small to determine by flash photolysis methods and were determined by other means. The small values of kQ result in very large equilibrium constants K for the... [Pg.210]

It is quite evident that the ferrous complexes of porphyrins, both natural and synthetic, have extremely high affinities towards NO. A series of iron (II) porphyrin nitrosyls have been synthesized and their structural data [11, 27] revealed non-axial symmetry and the bent form of the Fe-N=0 moiety [112-116]. It has been found that the structure of the Fe-N-O unit in model porphyrin complexes is different from those observed in heme proteins [117]. The heme prosthetic group is chemically very similar, hence the conformational diversity was thought to arise from the steric and electronic interaction of NO with the protein residue. In order to resolve this issue femtosecond infrared polarization spectroscopy was used [118]. The results also provided evidence for the first time that a significant fraction (35%) of NO recombines with the heme-Fe(II) within the first 5 ps after the photolysis, making myoglobin an efficient N O scavenger. [Pg.114]

The cases of myoglobin and hemoglobin are not rare. Many enzymes are dependent for their function on the presence of a nonprotein group. For example, cytochrome c also contains a prosthetic group similar, but not identical, to heme, as do a number of other proteins. These are known generically as heme proteins. There is a family of enzymes that contain a flavin group, the flavoproteins. Another family contains pyridoxal phosphate, a derivative of vitamin Be. There are a number of other examples. [Pg.145]

Myoglobin in many respects is the prototypical example of the larger family of heme containing proteins and enzymes that vary in function from the relatively simple process of reversible binding of an electron to the activation of dioxygen for substrate hydroxylation. The relationship between members of this family of proteins is not based simply on structural similarities but on similarities in chemical reactivity as well. As the structure of myoglobin is relatively simple compared to other heme proteins and as it was the first for which the three-dimensional... [Pg.2]

The first electrochemical studies of Mb were reported for the horse heart protein in 1942 (94) and subsequently for sperm whale Mb (e.g., 95) through use of potentiometric titrations employing a mediator to achieve efficient equilibriation of the protein with the electrode (96). More recently, spectroelectrochemical measurements have also been employed (97, 98). The alternative methods of direct electrochemistry (99-102) that are used widely for other heme proteins (e.g., cytochrome c, cytochrome bs) have not been as readily applied to the study of myoglobin because coupling the oxidation-reduction eqiulibrium of this protein to a modified working electrode surface has been more difficult to achieve. As a result, most published electrochemical studies of wild-type and variant myoglobins have involved measurements at eqiulibrium rather than dynamic techniques. [Pg.9]

In vivo heme is released into the plasma by erythrocyte lysis in the form of hemoglobin and by tissue trauma in the form of myoglobin, and both heme proteins are quickly oxidized to their ferric heme forms (methemoglobin and metmyoglobin) at the oxygen tension found in tissue capillary beds. [Pg.208]

Fig. 1. Overview of intravascular heme catabolism. Hemoglobin, myoglobin, and other heme proteins are released into the circulation upon cellular destruction, and the heme moiety is oxidized by O2 to the ferric form (e.g., methemoglobin and metmyoglobin). Haptoglobin can bind a substantial amount of hemoglobin, but is readily depleted. Ferric heme dissociates from globin and can be bound by albumin or more avidly by hemopexin. Hemopexin removes heme from the circulation by a receptor-mediated transport mechanism, and once inside the ceU heme is transported to heme oxygenase for catabolism. Fig. 1. Overview of intravascular heme catabolism. Hemoglobin, myoglobin, and other heme proteins are released into the circulation upon cellular destruction, and the heme moiety is oxidized by O2 to the ferric form (e.g., methemoglobin and metmyoglobin). Haptoglobin can bind a substantial amount of hemoglobin, but is readily depleted. Ferric heme dissociates from globin and can be bound by albumin or more avidly by hemopexin. Hemopexin removes heme from the circulation by a receptor-mediated transport mechanism, and once inside the ceU heme is transported to heme oxygenase for catabolism.

See other pages where Heme proteins myoglobin is mentioned: [Pg.40]    [Pg.289]    [Pg.185]    [Pg.194]    [Pg.43]    [Pg.44]    [Pg.6376]    [Pg.249]    [Pg.512]    [Pg.512]    [Pg.6375]    [Pg.113]    [Pg.69]    [Pg.6424]    [Pg.176]    [Pg.385]    [Pg.40]    [Pg.289]    [Pg.185]    [Pg.194]    [Pg.43]    [Pg.44]    [Pg.6376]    [Pg.249]    [Pg.512]    [Pg.512]    [Pg.6375]    [Pg.113]    [Pg.69]    [Pg.6424]    [Pg.176]    [Pg.385]    [Pg.1148]    [Pg.146]    [Pg.364]    [Pg.239]    [Pg.562]    [Pg.579]    [Pg.98]    [Pg.124]    [Pg.73]    [Pg.77]    [Pg.209]    [Pg.251]    [Pg.3]    [Pg.5]    [Pg.10]    [Pg.206]    [Pg.206]    [Pg.279]    [Pg.311]    [Pg.345]    [Pg.363]    [Pg.368]    [Pg.397]   
See also in sourсe #XX -- [ Pg.115 ]




SEARCH



Heme proteins

Heme proteins myoglobin reconstitution

Myoglobin

Protein myoglobin

© 2024 chempedia.info