Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hematite properties

Although numerous mud additives aid in obtaining the desired drilling fluid properties, water-based muds have three basic components water, reactive soHds, and inert soHds. The water forming the continuous phase may be fresh water, seawater, or salt water. The reactive soHds are composed of commercial clays, incorporated hydratable clays and shales from drilled formations, and polymeric materials, which may be suspended or dissolved in the water phase. SoHds, such as barite and hematite, are chemically inactive in most mud systems. Oil and synthetic muds contain, in addition, an organic Hquid as the continuous phase plus water as the discontinuous phase. [Pg.177]

Iron Oxide Reds. From a chemical point of view, red iron oxides are based on the stmcture of hematite, a-Fe202, and can be prepared in various shades, from orange through pure red to violet. Different shades are controlled primarily by the oxide s particle si2e, shape, and surface properties. Production. Four methods are commercially used in the preparation of iron oxide reds two-stage calcination of FeS047H2 O precipitation from an aqueous solution thermal dehydration of yellow goethite, a-FeO(OH) and oxidation of synthetic black oxide, Fe O. ... [Pg.11]

Heat of vaporization, 66 see also Vaporization Helium, 91 boiling point, 63 heat of vaporization, 105 interaction between atoms, 277 ionization energy, 268 molar volume, 60 on Sun, 447 source, 91 Hematite, 404 Hemin, structure of, 397 Hess s Law, 111 Heterogeneous, 70 systems and reaction rate, 126 n-Hexane properties, 341 Hibernation, 2 Hildebrand, Joel H.. 163 Holmium, properties, 412 Homogeneous, 70 systems and reaction rate, 126 Hydration, 313 Hydrazine, 46, 47, 231 Hydrides of third-row elements, 102 boiling point of. 315 Hydrocarbons, 340 unsaturated, 342... [Pg.460]

Lian, J.B., Duan, X.C., Ma, J.M., Peng, P., Kim, T.I. and Zheng, W.J. (2009) Hematite (alpha-Fe2C>3) with various morphologies ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano, 3 (11), 3749—3761. [Pg.83]

Isomorphous substitution of iron oxides is important for several reasons. In the electronics industry, trace amounts (dopants) of elements such as Nb and Ge are incorporated in hematite to improve its semiconductor properties. Dopants are also added to assist the reduction of iron ores. In nature, iron oxides can act as sinks for potentially toxic M", M and M heavy metals. Investigation of the phenomenon of isomorphous substitution has also helped to establish a better understanding of the geochemical and environmental pathways followed by Al and various trace elements. Empirical relationships (e. g. Fe and V) are often found between the Fe oxide content of a weathered soil profile and the levels of various trace elements. Such relationships may indicate similarities in the geochemical behaviour of the elements and, particularly for Al/Fe, reflect the environment in which the oxides have formed (see chap. 16). [Pg.42]

Hematite, wiistite, maghemite and magnetite are semiconductors magnetite displays almost metallic properties. For a compound to be a semiconductor, the essential characteristic is that the separation between the valence band of orbitals and the conduction band is less than 5 eV this condition is met for the above oxides. In a semiconductor the Fermi level (i. e. the level below which all electron energy levels are filled) lies somewhere between the valence band and the conduction band. [Pg.115]

I 6 Electronic, electrical and magnetic properties and colour 6.3.4.6 Hematite... [Pg.126]

Fig. 6.7 Temperature dependence of the magnetic properties of hematite. Tc = Curie temperature,Tm = Morin temperature, pm = paramagnetic region, wfm = weakly ferromagnetic region afm = antiferromagnetic region. The insets show simulated Mossbauer spectra of hematite in the paramagnetic, weakly ferromagnetic and antiferromagnetic states (Murad, 1988, with permission). Fig. 6.7 Temperature dependence of the magnetic properties of hematite. Tc = Curie temperature,Tm = Morin temperature, pm = paramagnetic region, wfm = weakly ferromagnetic region afm = antiferromagnetic region. The insets show simulated Mossbauer spectra of hematite in the paramagnetic, weakly ferromagnetic and antiferromagnetic states (Murad, 1988, with permission).
For iron oxides, IR spectroscopy is useful as a means of identification. Hematite crystals in films that were too thin (<70nm) to be characterized by XRD were shown by IR to be oriented with the c-axis perpendicular to the surface of the film (Yubero et al. 2000). This technique also provides information about crystal morphology, degree of crystallinity and the extent of metal (especially Al) substitution because these properties can induce shifts in some of the IR absorption bands. It is also widely used both to obtain information about the vibrational state of adsorbed molecules (particularly anions) and hence the nature of surface complexes (see Chap. 11) and to investigate the nature of surface hydroxyl groups and adsorbed water (see Chap. 10). Typical IR spectra of the various iron oxides are depicted in Figure 7.1. Impurities arising either from the method of preparation or from adsorption of atmospheric compounds can produce distinct bands in the spectra of these oxides -namely at 1700 cm (oxalate), 1400 cm (nitrate) and 1300 and 1500 cm (carbonate). [Pg.141]

Like X-ray diffraction patterns, neutron and electron diffraction patterns provide averaged information about the structure of a compound. Details of these techniques are given in works by Hirsch et al. (1965) and West (1988). Neutron diffraction involves interaction of neutrons with the nuclei of the atoms. As the neutrons are scattered relatively evenly by all the atoms in the compound, they serve to indicate the positions of the protons in an oxide hydroxide. This technique has been applied to elucidation of the structure and/or magnetic properties of goethite (Szytula et al., 1968 Forsyth et al., 1968), akaganeite (Szytula et al., 1970), lepidocrocite (Oles et al., 1970 Christensen Norlund-Christensen, 1978), hematite (Samuelson Shirane, 1970 Fernet et al., 1984) and wiistite (Roth, 1960 Cheetham et al., 1971 Battle Cheetham, 1979). A neutron diffractogram of a 6-line ferrihydrite was recently produced by Jansen et al. (2002) and has helped to refine its structure (see chap. 2). [Pg.177]

Tab. 8.5 Apparent surface thermodynamic properties for goethite and hematite at 298.15K (see Diakonov et al. 1994)... Tab. 8.5 Apparent surface thermodynamic properties for goethite and hematite at 298.15K (see Diakonov et al. 1994)...

See other pages where Hematite properties is mentioned: [Pg.389]    [Pg.389]    [Pg.415]    [Pg.408]    [Pg.410]    [Pg.177]    [Pg.11]    [Pg.169]    [Pg.180]    [Pg.183]    [Pg.1196]    [Pg.960]    [Pg.538]    [Pg.150]    [Pg.49]    [Pg.8]    [Pg.53]    [Pg.183]    [Pg.426]    [Pg.427]    [Pg.234]    [Pg.42]    [Pg.13]    [Pg.51]    [Pg.52]    [Pg.53]    [Pg.114]    [Pg.116]    [Pg.117]    [Pg.117]    [Pg.130]    [Pg.131]    [Pg.136]    [Pg.137]    [Pg.167]    [Pg.193]    [Pg.217]    [Pg.231]    [Pg.234]    [Pg.239]    [Pg.244]   
See also in sourсe #XX -- [ Pg.236 , Pg.268 ]




SEARCH



Hematite

Hematite magnetic properties

Hematite semiconductor properties

© 2024 chempedia.info