Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Helix amino acid residues

Amphipathic helix An a helix that can be described as a cylinder with polar (hydrophilic) and nonpolar (hydrophobic) sides). Since there are 3.6 amino acid residues in one turn of an a helix, amino acid residues that are 7 apart will line up on one side of the helix. [Pg.510]

Gly-Pro-Y > Gly-X-Pro > Gly-X-Y. In a given polypeptide chain of native tropocollagen, about one third of the molecule contains the Gly-Pro-Hyp sequence and two thirds involve Gly-X-Y, which decreases the stability of the triple helix. Amino acid residues other than proline and hydroxyproline that occupy the X- and Y-positions decrease helix stability but are essential for the next level of organization of collagen—the formation of microfibrils. [Pg.176]

The relationships between those concepts. The principle among these is the is-a relationship that describes a parent-child relationship, or class subclass, where the child concept is also a kind of the parent concept. The second major relationship is the part-of relationship that describes parts and their wholes [8], such as parts of proteins (active site, alpha-helix, amino acid residue) and their relationship to the whole protein. Other associative relationships are used causative, nominative, and so on. [Pg.455]

Figure 2.4 The helical wheel or spiral. Amino acid residues are plotted every 100° around the spiral, following the sequences given in Table 2.1. The following color code is used green Is an amino acid with a hydrophobic side chain, blue is a polar side chain, and red is a charged side chain. The first helix is all hydrophobic, the second is polar on one side and hydrophobic on the other side, and the third helix is all polar. Figure 2.4 The helical wheel or spiral. Amino acid residues are plotted every 100° around the spiral, following the sequences given in Table 2.1. The following color code is used green Is an amino acid with a hydrophobic side chain, blue is a polar side chain, and red is a charged side chain. The first helix is all hydrophobic, the second is polar on one side and hydrophobic on the other side, and the third helix is all polar.
Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]... Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]...
Figure 8.6 The N-terminal domain of lambda repressor, which binds DNA, contains 92 amino acid residues folded into five a helices. Two of these, a2 (blue) and a3 (red) form a helix-turn-hellx motif with a very similar structure to that of lambda Cro shown In Figure 8.4. The complete repressor monomer contains in addition a larger C-termlnal domain. (Adapted from C. Pabo and M. Lewis, Nature 298 443-447, 1982.)... Figure 8.6 The N-terminal domain of lambda repressor, which binds DNA, contains 92 amino acid residues folded into five a helices. Two of these, a2 (blue) and a3 (red) form a helix-turn-hellx motif with a very similar structure to that of lambda Cro shown In Figure 8.4. The complete repressor monomer contains in addition a larger C-termlnal domain. (Adapted from C. Pabo and M. Lewis, Nature 298 443-447, 1982.)...
Figure 8.18 The subunit of the trp repressor. The subunit contains 107 amino acid residues that are folded into six a helices. Helices 4 (blue) and 5 (red) form the DNA-binding helix-tum-helix motif. (Adapted from R.W. Schevitz et ah. Nature 317 782-786, 1985.)... Figure 8.18 The subunit of the trp repressor. The subunit contains 107 amino acid residues that are folded into six a helices. Helices 4 (blue) and 5 (red) form the DNA-binding helix-tum-helix motif. (Adapted from R.W. Schevitz et ah. Nature 317 782-786, 1985.)...
Many biochemical and biophysical studies of CAP-DNA complexes in solution have demonstrated that CAP induces a sharp bend in DNA upon binding. This was confirmed when the group of Thomas Steitz at Yale University determined the crystal structure of cyclic AMP-DNA complex to 3 A resolution. The CAP molecule comprises two identical polypeptide chains of 209 amino acid residues (Figure 8.24). Each chain is folded into two domains that have separate functions (Figure 8.24b). The larger N-terminal domain binds the allosteric effector molecule, cyclic AMP, and provides all the subunit interactions that form the dimer. The C-terminal domain contains the helix-tum-helix motif that binds DNA. [Pg.146]

Figure 10.5 Comparison of the sequence-specific binding to DNA of six different zinc fingers. Residues in the N-terminus of the a helix in the finger regions are numbered 1 to 6. The residue immediately preceding the a helix is numbered -1. Amino acid residues and nucleotides that make sequence-specific contacts are colored. In spite of the structural similarities between the zinc fingers and their overall mode of binding, there is no simple rule that governs which bases the fingers contact. Figure 10.5 Comparison of the sequence-specific binding to DNA of six different zinc fingers. Residues in the N-terminus of the a helix in the finger regions are numbered 1 to 6. The residue immediately preceding the a helix is numbered -1. Amino acid residues and nucleotides that make sequence-specific contacts are colored. In spite of the structural similarities between the zinc fingers and their overall mode of binding, there is no simple rule that governs which bases the fingers contact.
They started from the sequence of a domain, Bl, from an IgG-binding protein called Protein G. This domain of 56 amino acid residues folds into a four-stranded p sheet and one a helix (Figure 17.16). Their aim was to convert this structure into an all a-helical structure similar to that of Rop (see Chapter 3). Each subunit of Rop is 63 amino acids long and folds into two a helices connected by a short loop. The last seven residues are unstructured and were not considered in the design procedure. Two subunits of Rop form a four-helix bundle (Figure 17.16). [Pg.369]

As noted, hemoglobin is an tetramer. Each of the four subunits has a conformation virtually identical to that of myoglobin. Two different types of subunits, a and /3, are necessary to achieve cooperative Oa-binding by Hb. The /3-chain at 146 amino acid residues is shorter than the myoglobin chain (153 residues), mainly because its final helical segment (the H helix) is shorter. The a-chain (141 residues) also has a shortened H helix and lacks the D helix as well (Figure 15.28). Max Perutz, who has devoted his life to elucidating the atomic structure of Hb, noted very early in his studies that the molecule was... [Pg.483]

A model for the allosteric behavior of hemoglobin is based on recent observations that oxygen is accessible only to the heme groups of the a-chains when hemoglobin is in the T conformational state. Perutz has pointed out that the heme environment of /3-chains in the T state is virtually inaccessible because of steric hindrance by amino acid residues in the E helix. This hindrance dis-... [Pg.487]

Approximately 500 of the 820 amino acid residues of the myosin head are highly conserved between various species. One conserved region, located approximately at residues 170 to 214, constitutes part of the ATP-binding site. Whereas many ATP-binding proteins and enzymes employ a /3-sheet-a-helix-/3-sheet motif, this region of myosin forms a related a-f3-a structure, beginning with an Arg at (approximately) residue 192. The /3-sheet in this region of all myosins includes the amino acid sequence... [Pg.545]

The secondary structure - the regular, recuiring, arrangements in space of adjacent amino acid residues in the protein chain, e.g. a-helix, /S-sheet, etc. [Pg.206]


See other pages where Helix amino acid residues is mentioned: [Pg.66]    [Pg.1167]    [Pg.66]    [Pg.1167]    [Pg.332]    [Pg.559]    [Pg.65]    [Pg.383]    [Pg.35]    [Pg.36]    [Pg.129]    [Pg.135]    [Pg.136]    [Pg.136]    [Pg.141]    [Pg.176]    [Pg.180]    [Pg.189]    [Pg.271]    [Pg.288]    [Pg.340]    [Pg.350]    [Pg.163]    [Pg.164]    [Pg.164]    [Pg.179]    [Pg.272]    [Pg.315]    [Pg.324]    [Pg.723]    [Pg.61]    [Pg.1038]    [Pg.870]    [Pg.1082]    [Pg.1095]    [Pg.1227]    [Pg.161]    [Pg.163]    [Pg.100]   
See also in sourсe #XX -- [ Pg.52 , Pg.52 ]




SEARCH



Acidic residues

Amino acid residues

Amino residues

Helix residue

© 2024 chempedia.info