Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Helical tetramers

FIGURE 18. Computed structure of the helical tetramer, 58. Reprinted with permission from the... [Pg.505]

Figure 8.22 The lac repressor molecule is a V-shaped tetramer in which each arm is a dimer containing a DNA-hinding site. The helix-tum-helix motifs (red) of each dimer bind in two successive major grooves and the hinge helices (purple) bind adjacent to each other in the minor groove between the two major groove binding sites. The four subunits of the tetramer are held together by the four C-terminal helices (yellow) which form a four helix bundle. The bound DNA fragments are bent. (Adapted from M. Lewis et al., Science 271 1247-1254, 1996.)... Figure 8.22 The lac repressor molecule is a V-shaped tetramer in which each arm is a dimer containing a DNA-hinding site. The helix-tum-helix motifs (red) of each dimer bind in two successive major grooves and the hinge helices (purple) bind adjacent to each other in the minor groove between the two major groove binding sites. The four subunits of the tetramer are held together by the four C-terminal helices (yellow) which form a four helix bundle. The bound DNA fragments are bent. (Adapted from M. Lewis et al., Science 271 1247-1254, 1996.)...
Figure 8.23 The helix-turn-helix motifs of the subunits of both the PurR and the lac repressor subunits bind to the major groove of DNA with the N-terminus of the second helix, the recognition helix, pointing into the groove. The two hinge helices of each arm of the V-shaped tetramer bind adjacent to each other in the minor groove of DNA, which is wide and shallow due to distortion of the B-DNA structure. (Adapted from M.A. Schumacher et al.. Science 266 763-770, 1994.)... Figure 8.23 The helix-turn-helix motifs of the subunits of both the PurR and the lac repressor subunits bind to the major groove of DNA with the N-terminus of the second helix, the recognition helix, pointing into the groove. The two hinge helices of each arm of the V-shaped tetramer bind adjacent to each other in the minor groove of DNA, which is wide and shallow due to distortion of the B-DNA structure. (Adapted from M.A. Schumacher et al.. Science 266 763-770, 1994.)...
Two such dimers form the tetramer through mainly hydrophobic interactions between the a helices. The p strands are on the outside of the tetramer and are not involved in the dimer-dimer interactions. The arrangement of the four a helices is unusual and provides a rare example of four a helices packed against each other in a way different from the four-helix bundle motif. [Pg.167]

Figure 9.17 Schematic diagram illustrating the tetrameric stmcture of the pS3 oligomerization domain. The four subunits have different colors. Each subunit has a simple structure comprising a p strand and an a helix joined by a one-residue turn. The tetramer is built up from a pair of dimers (yellow-blue and red-green). Within each dimer the p strands form a two-stranded antiparallel p sheet which provides most of the subunit interactions. The two dimers are held together by interactions between the four a helices, which are packed in a different way from a four-helix bundle. (Adapted from P.D. Jeffrey et al.. Science 267 1498-1502, 1995.)... Figure 9.17 Schematic diagram illustrating the tetrameric stmcture of the pS3 oligomerization domain. The four subunits have different colors. Each subunit has a simple structure comprising a p strand and an a helix joined by a one-residue turn. The tetramer is built up from a pair of dimers (yellow-blue and red-green). Within each dimer the p strands form a two-stranded antiparallel p sheet which provides most of the subunit interactions. The two dimers are held together by interactions between the four a helices, which are packed in a different way from a four-helix bundle. (Adapted from P.D. Jeffrey et al.. Science 267 1498-1502, 1995.)...
Figure 14.6 A model of intermediate filament construction. The monomer shown in (a) pairs with an identical monomer to form a coiled-coil dimer (b). The dimers then line up to form an antiparallel tetramer (c). Within each tetramer the dimers are staggered with respect to one another, allowing it to associate with another tetramer (d). In the final 10-nm rope-like intermediate filament, tetramers are packed together in a helical array (e). Figure 14.6 A model of intermediate filament construction. The monomer shown in (a) pairs with an identical monomer to form a coiled-coil dimer (b). The dimers then line up to form an antiparallel tetramer (c). Within each tetramer the dimers are staggered with respect to one another, allowing it to associate with another tetramer (d). In the final 10-nm rope-like intermediate filament, tetramers are packed together in a helical array (e).
As noted, hemoglobin is an tetramer. Each of the four subunits has a conformation virtually identical to that of myoglobin. Two different types of subunits, a and /3, are necessary to achieve cooperative Oa-binding by Hb. The /3-chain at 146 amino acid residues is shorter than the myoglobin chain (153 residues), mainly because its final helical segment (the H helix) is shorter. The a-chain (141 residues) also has a shortened H helix and lacks the D helix as well (Figure 15.28). Max Perutz, who has devoted his life to elucidating the atomic structure of Hb, noted very early in his studies that the molecule was... [Pg.483]

Aquaporins. Figure 1 (a) The hour-glass model. The scheme depicts the six transmembrane helices (H1-H6), the connecting loops A-E, including the helical parts of loops B ((H)B) and E (E(H)), and the conserved NPA (Asn-Pro-Ala) motif of canonical aquaporins. (b) Structure of the conserved NPA motif region, flanked by the indicated helices, (c) Crystallographic structure of AQP1 tetramer. The four water pores in atetramer are indicated [1]. [Pg.214]

An intracellular fibrous system exists of filaments with an axial periodicity of 21 nm and a diameter of 8-10 nm that is intermediate between that of microfilaments (6 nm) and microtubules (23 nm). Four classes of intermediate filaments are found, as indicated in Table 49-13. They are all elongated, fibrous molecules, with a central rod domain, an amino terminal head, and a carboxyl terminal tail. They form a structure like a rope, and the mature filaments are composed of tetramers packed together in a helical manner. They are important structural components of cells, and most are relatively stable components of the cytoskeleton, not undergoing rapid assembly and disassembly and not... [Pg.577]

Top right) The tetramer viewed from the top. The transition segment between the N-helix and the C-helix is shown in yellow and blue and the C-terminus is shown in green and purple. The hydrophobic strips are in the center and the N-helices are on each side. The tetramer has 2-fold symmetry about each of the three axes. [Pg.352]

Figure 4.1 hERG channel secondary structure (a) and homology models of the pore (b). (a) hERG channels are tetramers consisting of four identical subunits with six transmembrane spanning helical segments labeled S1-S6. [Pg.91]

Infrared and circular dichroism (CD) measurements (Moss et al., 1976b) are both consistent with a sizable fraction of the tetramer being in the a-helical configuration, —29% a-helix with negligible j3 structure. This is rather similar to the 25% a-helix and —0% /3 structure obtained for the tetramer prepared from acid-extracted histones (D Anna and Isenberg, 1974b). [Pg.13]

Conclusions from the reference 28 review article are as follows (1) Several models backed by experiment place S4 near the groove between adjacent subunits, while the MacKinnon group model places S4 near the periphery of the protein (2) lanthanide-based resonance energy transfer (LRET) places two S4 residues in segments across the tetramer from each other at a distance of 45 A (3) a method based on tethered quaternary ammonium pore blockers places the extracellular ends of the SI and S3 helices further away from the ion conduction pore than the S3-S4 linker, arguing that the S4 helix resides... [Pg.224]


See other pages where Helical tetramers is mentioned: [Pg.74]    [Pg.102]    [Pg.108]    [Pg.111]    [Pg.183]    [Pg.74]    [Pg.102]    [Pg.108]    [Pg.111]    [Pg.183]    [Pg.145]    [Pg.167]    [Pg.204]    [Pg.167]    [Pg.45]    [Pg.378]    [Pg.617]    [Pg.352]    [Pg.354]    [Pg.361]    [Pg.16]    [Pg.636]    [Pg.124]    [Pg.164]    [Pg.412]    [Pg.114]    [Pg.90]    [Pg.39]    [Pg.214]    [Pg.394]    [Pg.494]    [Pg.209]    [Pg.222]    [Pg.227]    [Pg.230]    [Pg.232]    [Pg.346]    [Pg.35]    [Pg.39]    [Pg.185]    [Pg.217]    [Pg.443]   


SEARCH



Tetramer

Tetramers

Tetramers helically stacked

© 2024 chempedia.info