Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Helical smectic phases

The three classes of liquid crystals differ in the arrangement of their molecules. In the nematic phase, the molecules lie together, all in the same direction but staggered, like cars on a busy multilane highway (Fig. 5.49). In the smectic phase, the molecules line up like soldiers on parade and form layers (Fig. 5.50). Cell membranes are composed mainly of smectic liquid crystals. In the cholesteric phase, the molecules form ordered layers, but neighboring layers have molecules at different angles and so the liquid crystal has a helical arrangement of molecules (Fig. 5.51). [Pg.326]

Chirality (or a lack of mirror symmetry) plays an important role in the LC field. Molecular chirality, due to one or more chiral carbon site(s), can lead to a reduction in the phase symmetry, and yield a large variety of novel mesophases that possess unique structures and optical properties. One important consequence of chirality is polar order when molecules contain lateral electric dipoles. Electric polarization is obtained in tilted smectic phases. The reduced symmetry in the phase yields an in-layer polarization and the tilt sense of each layer can change synclinically (chiral SmC ) or anticlinically (SmC)) to form a helical superstructure perpendicular to the layer planes. Hence helical distributions of the molecules in the superstructure can result in a ferro- (SmC ), antiferro- (SmC)), and ferri-electric phases. Other chiral subphases (e.g., Q) can also exist. In the SmC) phase, the directions of the tilt alternate from one layer to the next, and the in-plane spontaneous polarization reverses by 180° between two neighbouring layers. The structures of the C a and C phases are less certain. The ferrielectric C shows two interdigitated helices as in the SmC) phase, but here the molecules are rotated by an angle different from 180° w.r.t. the helix axis between two neighbouring layers. [Pg.125]

Stiff rod-like helical polymers are expected to spontaneously form a thermotropic cholesteric liquid crystalline (TChLC) phase under specific conditions as well as a lyotropic liquid crystal phase. A certain rod-like poly(f-glutamate) with long alkyl side chains was recently reported to form a TChLC phase in addition to hexagonal columnar and/or smectic phases [97,98]. These properties have already been observed in other organic polymers such as cellulose and aromatic polymers. [Pg.172]

Molecules that contain a chiral center can form chiral liquid crystalline phases, where the orientation direction rotates in a helical fashion as one moves along the helical axis, which is perpendicular to the locally preferred direction of orientation. Both nematic and smectic phases can be chiral. In a chiral nematic phase, also known as a cholesteric, as one moves along the helical axis, the director rotates sinusoidally (see Fig. 10-31. Thus, if z is... [Pg.445]

The chiral side chain polymers derived from asymmetric esters of terephthalic acid and hydroquinone can form (in a broad temperature range, including ambient temperature) an unusual mesophase (the isotropic smectic phase, IsoSm ) characterized by high transparency and optical isotropy within the visible wavelength range, combined with a hidden layered smectic ordering and some elements of helical superstructure at shorter dimensions of 10 to 250 nm. The short-pitch TGB A model seems to be the most adequate for the mesophase structure. [Pg.172]

Almost all the smectic phases, in which the molecules are arranged in layers and are tilted with respect to the layers, have counterpart chiral phases. The most important one of this class is the chiral smectic C phase — Sc phase. In these chiral liquid crystal phases, the molecules are tilted at a constant angle with respect to the layer normal but the tilt azimuthal rotates uniformly along the chiral axis and forms a helical structure. [Pg.19]

Once the helical structure of the Sc phase is unwound, ferroelectricity is displayed (see Chapter 6 for the details). In recent years, many experimental studies have revealed that some liquid crystal compounds show new types of smectic phases with complex tilt and dipole order, such as the anti-ferroelectric smectic C phase, Sca phase, and the ferrielectric smectic C phase, Sc7 phase. For instance, in the Sca phase, the spontaneous polarization Ps is opposite for successive layers. It was found experimentally that the chiral So phase is in fact similar to the anti-ferroelectric Sca phase. [Pg.20]

Fig. 5. Helical Structures of the chiral nematic and chiral smectic phases... Fig. 5. Helical Structures of the chiral nematic and chiral smectic phases...
The analogues of the smectic A" and G" phases, the TGBA" and TGBG phases, have been detected at the chiral nematic to smectic A" and the chiral nematic or TGBA" to smectic G" transitions [16, 17]. Two helical forms of the TGB phases are possible, one where the helical structural arrangements of the blocks or sheets of the smectic phase are rational, i.e., the number of blocks required to form a 360° rotation of the helix is a whole number, in which case the phase is said to be commensurate , or alternatively where the number of... [Pg.93]

Initially the octyl to dodecyl compounds were prepared and these were found to exhibit relatively normal behavior, i.e. smectic A phases were found for the lower homologues with smectic and ferroelectric smectic C phases occurring for the higher members. However, when the tetradecyl homologue was examined in the polarizing transmitted light microscope, an iridescent helical mesophase was observed which upon cooling underwent a further phase transition to a ferroelectric smectic phase. In addition, this compound was also found to exhibit antiferroelectric and ferrielectric phases. [Pg.104]

As this compound was one of the higher homologues in the series, and because we knew that the earlier homologues did not exhibit a chiral nematic phase, it was clear that the new phase also could not be a chiral nematic phase. In addition, it was clear from the formation of the defect structures seen in the microscope that the phase first formed from the isotropic liquid possessed a helix, see Plate 1, which had its heli-axis at right angles to the heli-axis in the lower temperature chiral ferroelectric smectic phase. This simple observation meant that if the phase was a lamellar smectic phase then the helix would have to be formed, inconceivably, in a direction parallel to the layers. Synthesis of the achiral variant confirmed that the phase formed first on cooling from the isotropic liquid was indeed a smectic A phase, and thus we immediately knew that we had found a smectic A phase where the helical macro structure formed in the planes of the layers, and thus the helix must... [Pg.104]

Looking back, the earliest written report concerning the possibility of having a smectic phase with twisted layers comes from the work of Wolfgang Ullrich Muller at the Technischen Universitat Berlin in 1974 [40], In his thesis entitled Verhalten cholesterischer Mesophasen unter dem Einfluss von Phasenum-wandlungen , Muller examined the mesophase behavior at the chiral nematic to smectic transition for various mixtures of cholesteryl oleoyl carbonate (COG), 5, and cholesteryl chloride (CC), 6. Muller came to the conclusion from his work that the smectic phase must have a helical structure and that the heli-axis must lie in the plane of the layers, and the structure must also have... [Pg.122]

Since the discovery of the first liquid crystalline material in 1888, helicity has proven to be one of the most fascinating topics in this field."" Several liquid crystalline phases with helical structure were reported, such as chlolesteric phase, blue phase, ferroelectric and antiferro-electric smectic phases, and helical smectic A phase. In most of these helical phases, at least a fraction of the constituent molecules have an asymmetric carbon, and it was long believed that chirality at a molecular level is a prerequisite to construct chiral architectures at the mesoscopic level. However, Watanabe et al. reported the first example of spontaneous helix formation in liquid crys-... [Pg.1351]


See other pages where Helical smectic phases is mentioned: [Pg.160]    [Pg.935]    [Pg.160]    [Pg.935]    [Pg.7]    [Pg.111]    [Pg.113]    [Pg.174]    [Pg.107]    [Pg.146]    [Pg.177]    [Pg.42]    [Pg.151]    [Pg.416]    [Pg.212]    [Pg.79]    [Pg.35]    [Pg.213]    [Pg.444]    [Pg.740]    [Pg.151]    [Pg.172]    [Pg.416]    [Pg.92]    [Pg.94]    [Pg.116]    [Pg.194]    [Pg.239]    [Pg.42]    [Pg.1351]    [Pg.164]    [Pg.167]    [Pg.416]    [Pg.104]    [Pg.135]   
See also in sourсe #XX -- [ Pg.126 ]

See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Helical phase

Phase smectic

© 2024 chempedia.info