Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat transfer turbulent-flow region

Limiting Nusselt numbers for laminar flow in annuli have been calculated by Dwyer [Nucl. Set. Eng., 17, 336 (1963)]. In addition, theoretical analyses of laminar-flow heat transfer in concentric and eccentric annuh have been published by Reynolds, Lundberg, and McCuen [Jnt. J. Heat Ma.s.s Tran.sfer, 6, 483, 495 (1963)]. Lee fnt. J. Heat Ma.s.s Tran.sfer, 11,509 (1968)] presented an analysis of turbulent heat transfer in entrance regions of concentric annuh. Fully developed local Nusselt numbers were generally attained within a region of 30 equivalent diameters for 0.1 < Np < 30, lO < < 2 X 10, 1.01 <... [Pg.561]

The first relation gives the average heat transfer coefficient for die entire plate when the flow is laminar over the etUire plate. The second relation gives the average heal transfer coefficient for the entire plate only when the flow is iiir-bulent over the entire plate, or when the laminar flow region of the plate is too small relative to the turbulent flow region. [Pg.421]

Heat Transfer in Transition Region between Laminar and Turbulent Flow... [Pg.353]

R. G. Deissler, Analysis of Turbulent Heat Transfer and Flow in the Entrance Regions of Smooth Passages, NACA TN 3016,1953. [Pg.430]

In the turbulent flow region and at the same pressure drop the tube side often offers better heat transfer conditions than the shell side. This depends, however, on various factors tube length, number of tube passes, tube diameter, physical properties of the fluid, etc. To arrive at the optimum solution in a minimum of time, use of the following calculation method is suggested. The method is best explained by examples. The equations used have been derived from well-known heat transfer principles. [Pg.56]

Mori, Y. and W. Nakayama, Study on Forced Convective Heat Transfer in Curved Pipes, Pt. 11 Turbulent Flow Region, Int. J. Heal Mass Transfer, 10, 37-59 (1967). [Pg.403]

Turbulent Flow For engineering purposes, semi-empirical equations are generally used to describe heat transfer in turbulent flow. These correlations adequately predict heat transfer in this region. (Nomenclature is presented in Chapter 44.)... [Pg.11]

Transition Region Turbulent-flow equations for predicting heat transfer coefficients are usually vahd only at Reynolds numbers greater than 10,000. The transition region lies in the range 2000 < < 10,000. [Pg.562]

GASFLOW models geometrically complex containments, buildings, and ventilation systems with multiple compartments and internal structures. It calculates gas and aerosol behavior of low-speed buoyancy driven flows, diffusion-dominated flows, and turbulent flows dunng deflagrations. It models condensation in the bulk fluid regions heat transfer to wall and internal stmetures by convection, radiation, and condensation chemical kinetics of combustion of hydrogen or hydrocarbon.s fluid turbulence and the transport, deposition, and entrainment of discrete particles. [Pg.354]

In some convection equations, such as for turbulent pipe flow, a special correction factor is used. This factor relates to the heat transfer conditions at the flow inlet, where the flow has not reached its final velocity distribution and the boundary layer is not fully developed. In this region the heat transfer rate is better than at the region of fully developed flow. [Pg.115]

Computational fluid dynamics (CFD) is the numerical analysis of systems involving transport processes and solution by computer simulation. An early application of CFD (FLUENT) to predict flow within cooling crystallizers was made by Brown and Boysan (1987). Elementary equations that describe the conservation of mass, momentum and energy for fluid flow or heat transfer are solved for a number of sub regions of the flow field (Versteeg and Malalase-kera, 1995). Various commercial concerns provide ready-to-use CFD codes to perform this task and usually offer a choice of solution methods, model equations (for example turbulence models of turbulent flow) and visualization tools, as reviewed by Zauner (1999) below. [Pg.47]

Typical velocities in plate heat exchangers for waterlike fluids in turbulent flow are 0.3-0.9 meters per second (m/s) but true velocities in certain regions will be higher by a factor of up to 4 due to the effect of the corrugations. All heat transfer and pressure drop relationships are, however, based on either a velocity calculated from the average plate gap or on the flow rate per passage. [Pg.395]

In addition to momentum, both heat and mass can be transferred either by molecular diffusion alone or by molecular diffusion combined with eddy diffusion. Because the effects of eddy diffusion are generally far greater than those of the molecular diffusion, the main resistance to transfer will lie in the regions where only molecular diffusion is occurring. Thus the main resistance to the flow of heat or mass to a surface lies within the laminar sub-layer. It is shown in Chapter 11 that the thickness of the laminar sub-layer is almost inversely proportional to the Reynolds number for fully developed turbulent flow in a pipe. Thus the heat and mass transfer coefficients are much higher at high Reynolds numbers. [Pg.695]

Viscosity. Generally, a higher heat-transfer coefficient will be obtained by allocating the more viscous material to the shell-side, providing the flow is turbulent. The critical Reynolds number for turbulent flow in the shell is in the region of 200. If turbulent flow cannot be achieved in the shell it is better to place the fluid in the tubes, as the tube-side heat-transfer coefficient can be predicted with more certainty. [Pg.660]

In the flow region between laminar and fully developed turbulent flow heat-transfer coefficients cannot be predicted with certainty, as the flow in this region is unstable, and the transition region should be avoided in exchanger design. If this is not practicable the coefficient should be evaluated using both equations 12.11 and 12.13 and the least value taken. [Pg.664]

The heat transfer characteristics of liquid-solid fluidised systems, in which the heat capacity per unit volume of the solids is of the same order as that of the fluid are of considerable interest. The first investigation into such a system was carried out by Lemlich and Caldas193, although most of their results were obtained in the transitional region between streamline and turbulent flow and are therefore difficult to assess. Mitson194 and Smith(20) measured heat transfer coefficients for systems in which a number of different solids were fluidised by water in a 50 mm diameter brass tube, fitted with an annular heating jacket. [Pg.334]

The presence of the solid wall has a considerable influence on the turbulence structure near the wall. Because there can be no flow normal to the wall near the wall, v decreases as the wall is approached and as a result the turbulent stress and turbulent heat transfer rate are negligible in the region very near the wall. This region in which the effects of the turbulent stress and turbulent heat transfer rate can be neglected is termed the sublayer or, sometimes, the laminar sublayer [1],[2], [26],[27],[28],[29]. In this sublayer ... [Pg.245]


See other pages where Heat transfer turbulent-flow region is mentioned: [Pg.5]    [Pg.104]    [Pg.111]    [Pg.135]    [Pg.506]    [Pg.1301]    [Pg.91]    [Pg.65]    [Pg.720]    [Pg.152]    [Pg.337]    [Pg.79]    [Pg.181]    [Pg.328]    [Pg.179]    [Pg.329]    [Pg.296]    [Pg.10]    [Pg.314]    [Pg.371]    [Pg.382]    [Pg.346]    [Pg.813]    [Pg.256]    [Pg.162]    [Pg.193]    [Pg.137]    [Pg.181]    [Pg.328]    [Pg.60]    [Pg.250]   
See also in sourсe #XX -- [ Pg.132 , Pg.133 , Pg.134 , Pg.135 , Pg.137 ]




SEARCH



Flow region

Heat transfer turbulent flow

Turbulence flow

Turbulent flow

Turbulent flow Turbulence

Turbulent flow region

Turbulent regions

© 2024 chempedia.info