Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hartree-Fock equation atomic orbitals used with

Ab initio calculations usually begin with a solution of the Hartree-Fock equations, which assumes the electronic wavefunction can be written as a single determinant of molecular orbitals. The orbitals are described in terms of a basis set of atomic functions and the reliability of the calculation depends on the quality of the basis set being used. Basis sets have been developed over the years to produce reliable results with a minimum of computational cost. For example, double zeta valence basis sets such as 3-21G [15] 4-31G [16] and 6-31G [17] describe each atom in the molecule with a single core Is function and two functions for the valence s and p functions. Such basis sets are commonly used, as there appears to be a cancellation of errors, which fortuitously allows them to predict quite accurate results. [Pg.689]

It should be noted that by moving to a matrix problem, one does not remove the need for an iterative solution the F >v matrix elements depend on the Cv,i LCAO-MO coefficients which are, in turn, solutions of the so-called Roothaan matrix Hartree-Fock equations- Zv F >v Cv,i = Zv S v Cvj. One should also note that, just as F (f>j = j (f>j possesses a complete set of eigenfunctions, the matrix Fp,v, whose dimension M is equal to the number of atomic basis orbitals used in the LCAO-MO expansion, has M eigenvalues j and M eigenvectors whose elements are the Cv>i- Thus, there are occupied and virtual molecular orbitals (mos) each of which is described in the LCAO-MO form with CV)i coefficients obtained via solution of... [Pg.341]

These O, are called Linear Combination of Atomic Orbitals Molecular Orbitals (LCAO MOs) and if they are introduced into the Hartree-Fock equations (eqns (10-2.5)), a simple set of equations (the Hartree-Fock-Roothaan equations) is obtained which can be used to determine the optimum coefficients Cti. For those systems where the space part of each MO is doubly occupied, i.e. there are two electrons in each 0, with spin a and spin respectively so that the complete MOs including spin are different, the total wavefunction is... [Pg.201]

The correlated methods discussed up to this point provide a delocalized description of the electronic system. The delocalized nature of these methods arises from their use of canonical orbitals (i.e., the eigenvectors of the Hartree-Fock equations) of Eq. (33). To treat large systems, it is better to express the theory in terms of orbitals that are localized in space, extending over only a few atoms. The virtual excitations then occur predominantly locally in the molecule (among localized occupied and virtual orbitals). As a result, the number of excitation amplitudes increases only linearly with system size. [Pg.79]

The central field approximation and the simplifications which result from it allow one to construct a highly successful quantum-mechanical model for the AT-electron atom, by using Hartree s principle of the self-consistent field (SCF). In this method, one equation is obtained for each radial function, and the system is solved iteratively until convergence is obtained, which leaves the total energy stationary with respect to variations of all the functions (the variational principle ). The Hartree-Fock equations for an AT-electron system are equivalent to several one electron radial Schrodinger equations (see equation (2.2)), with terms which make the solution for one orbital dependent on all the others. In essence, the full AT-electron problem is approximated by a smaller number of coupled one-electron problems. This scheme is sometimes (somewhat inappropriately) referred to as a one-electron model in fact, the Hartree-Fock equations are a genuine AT-electron theory, but describe an independent particle system. [Pg.9]

If the Hartree-Fock equations associated with the valence pseudo-Hamiltonian (167) are solved with extended basis sets, then all the above F are almost basis-set-independent. At the present time, and for practical reasons, most of the ab initio valence-only molecular calculations use coreless pseudo-orbitals. The reliability of this approach is still a matter of discussion. Obviously the nodal structure is important for computing observable quantities such as the diamagnetic susceptibility which implies an operator proportional to 1/r. From the computational point of view, it is always easy to recover the nodal structure of coreless valence pseudo-orbitals by orthogonalizing the valence molecular orbitals to the core orbitals. This procedure has led to very accurate results for several internal observables in comparison with all-electron results. The problem of the shape of the pseudoorbitals in the core region is also important in relativity. For heavy atoms, the valence electrons possess high instantaneous velocities near the nuclei. Schwarz has recently investigated the compatibility between the internal structure of valence orbitals and the representations of operators such as the spin-orbit which vary as 1/r near the nucleus. ... [Pg.399]

Ideally, the best approach would be to be able to solve equation 1 directly to obtain the potential energy surface for the system. The most accurate way of doing this is by using one of the classes of ab initio QM methods that have been developed to solve equation 1 with as few as approximations as possible. Popular ab initio algorithms are Hartree-Fock (HF) molecular orbital (MO) [3] and density functional theory (DFT) methods [4]. The problem with all these techniques is that they are expensive to apply and are generally limited to handling relatively small systems (of a few tens of atoms at the most). As we shall see in section 3.3, recent algorithmic advances have improved this situation somewhat [5], but quicker methods are needed nevertheless. [Pg.2]

The preceding step to both MP2 and coupled-cluster calculations is to solve the Hartree-Fock equations. The standard approach is, of course, to solve the equations in a basis set expansion (Roothaan-Hall method), using atom-centered basis functions. This set of basis functions is used to expand the molecular orbitals and we will call it orbital basis set (OBS). It spans the computational (finite) orbital space. Occupied spin orbitals will be denoted (pi and virtual (unoccupied) spin orbitals pa- In order to address the terms that miss in a finite OBS expansion, the set of virtual spin orbitals in a formally complete space is introduced, pa- If we exclude from this space all those orbitals which can be represented by the OBS, we obtain the complementary space, with orbitals denoted cp i. The subdivision of the orbital space and the index conventions are summarized in the left part of Fig. 2. [Pg.36]

Ihe one-electron orbitals are commonly called basis functions and often correspond to he atomic orbitals. We will label the basis functions with the Greek letters n, v, A and a. n the case of Equation (2.144) there are K basis functions and we should therefore xpect to derive a total of K molecular orbitals (although not all of these will necessarily 3e occupied by electrons). The smallest number of basis functions for a molecular system vill be that which can just accommodate all the electrons in the molecule. More sophisti- ated calculations use more basis functions than a minimal set. At the Hartree-Fock limit he energy of the system can be reduced no further by the addition of any more basis unctions however, it may be possible to lower the energy below the Hartree-Fock limit ay using a functional form of the wavefunction that is more extensive than the single Slater determinant. [Pg.76]

The no-pair DCB Hamiltonian (6) is used as a starting point for variational or many-body relativistic calculations [9], The procedure is similar to the nonrelativistic case, with the Hartree-Fock orbitals replaced by the four-component Dirac-Fock-Breit (DFB) functions. The spherical symmetry of atoms leads to the separation of the one-electron equation into radial and spin-angular parts [10], The radial four-spinor has the so-called large component the upper two places and the small component Q, in the lower two. The quantum number k (with k =j+ 1/2) comes from the spin-angular equation, and n is the principal quantum number, which counts the solutions of the radial equation with the same k. Defining... [Pg.163]

Based on first principles. Used for rigorous quantum chemistry, i. e., for MO calculations based on Slater determinants. Generally, the Schrodinger equation (Hy/ = Ey/) is solved in the BO approximation (see Born-Oppenheimer approximation) with a large but finite basis set of atomic orbitals (for example, STO-3G, Hartree-Fock with configuration interaction). [Pg.180]

The solution of the secular equation Fy —F5y = 0 requires the evaluation of the constituent matrix terms Fy. The Fy s are, however, themselves functions of the coefficients of the atomic orbitals amt through Pjel and therefore can only be evaluated by solving the secular equation. The Hartree-Fock procedure thus requires that a preliminary guess be made as to the values of the molecular population distribution terms Pici these values are then used to calculate the matrix elements Fy and thence solve the secular determinant. This, in turn, provides a better approximation to the wave function and an. .improved set of values of Pm. The above procedure is repeated with this first improved set and a second improved set evaluated. The process is repeated until no difference is found between successive improved wave functions. Finally, it may be shown that when such a calculation has been iterated to self-consistency the total electronic energy E of a closed shell molecule is given by... [Pg.11]


See other pages where Hartree-Fock equation atomic orbitals used with is mentioned: [Pg.313]    [Pg.90]    [Pg.189]    [Pg.445]    [Pg.104]    [Pg.312]    [Pg.90]    [Pg.90]    [Pg.46]    [Pg.341]    [Pg.3]    [Pg.494]    [Pg.386]    [Pg.133]    [Pg.88]    [Pg.262]    [Pg.632]    [Pg.65]    [Pg.29]    [Pg.96]    [Pg.110]    [Pg.110]    [Pg.138]    [Pg.50]    [Pg.53]    [Pg.339]    [Pg.220]    [Pg.746]    [Pg.368]    [Pg.159]    [Pg.79]    [Pg.94]    [Pg.94]    [Pg.373]    [Pg.457]    [Pg.548]    [Pg.549]   
See also in sourсe #XX -- [ Pg.623 ]




SEARCH



Atoms equations

Fock equations

Hartree Fock equation

Hartree equation

Hartree-Fock orbital

Orbitals Hartree-Fock

Orbitals atoms with

Orbits, atoms with

Useful Equations

© 2024 chempedia.info