Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides molecular structure

Sulfone molecular structures, including sulfuryl halides, have been repeatedly reviewed through the late seventies28 and early eighties5. Scheme 1 contains a list of the compounds discussed in these references. While the structures of these compounds will be discussed, recent structural information that was not included in the above compilations will be described initially. The relevant substances are listed in Table 3 along with the S=0 bond lengths and OSO bond angles. [Pg.40]

The entrapment of lithium oxide and lithium halides by the lithium amidinate Li[Bu"C(NBu02] has been studied in detail by X-ray crystallography Interesting polycylic molecular structures have been obtained, as exemplified by the unusual sandwich complex of lithium oxide made from Li[Bu C(NBu )2l in toluene... [Pg.190]

Trzcinskabancroft, B., Knachel, H., Dudis, D., Delord, T.J. and Marler, D.O. (1985) Experimental And Theoretical-Studies Of Dinudear Gold(I) And Gold(II) Phosphorus Ylide Complexes - Oxidative Addition, Halide Exchange, And Structural-Properties Including The Crystal And Molecular-Structures Of [Au (CH2)2PPh2]2 And [Au(CH2)2PPh2]2(CH3) Bri. Journal of the American Chemical Society, 107(24), 6908-6915. [Pg.180]

The molecular structures from electron diffraction of zinc dichloride, zinc dibromide, and zinc diiodide have been reinvestigated.612 The important effects halides have on geometry have also been investigated, in particular the changes from octahedral to tetrahedral geometry in the presence of chloride ions have been studied.613... [Pg.1201]

The hydrogen halides are colourless gases at room temperature and pressure. They produce steamy fumes in moist air. They are covalently bonded molecules, with simple molecular structures. They are very soluble in water, as they react to form ions. [Pg.56]

It is important to be able to look at a molecular structure and deduce the possible reactions it can undergo. Take an alkene, for example. It has a 7t bond that makes it electron-rich and able to attack electrophiles such as water, halogens and hydrogen halides in electrophilic addition reactions. Haloalkanes, on the other hand, contain polar carbon-halogen bonds because the halogen is more electronegative than carbon. This makes them susceptible to attack by nucleophiles, such as hydroxide, cyanide and alkoxide ions, in nucleophilic substitution reactions. [Pg.72]

Hydrogen halides give iV-protonation of 2/7-1,2,3-diazaphospholes (molecular structure of a hydrochloride in Table 2) but also add to the P=C bond (see Section 4.22.5.1.2). Hydrolysis opens the P=N bond of l,2,3-diazaphospholo[l,5-a]pyridines <95S173>. [Pg.790]

X-ray crystallography, 40 20-21 synthetic models, 40 23-48 xanthane oxidase, 40 21-23 chalcogenide halides, 23 370-377, 413 Chevrel phases, 23 376-377 metal-metal bonding, 23 330, 373 structural data, 23 373-376 as superconductors, 23 376 synthesis, 23 371-372 chloride, 46 4-24, 35-44 heterocations of, 9 290, 291 cluster compounds, 44 45-46 octahedral, 44 47-49, 53-63 electronic structure, 44 55-63 molecular structure, 44 53-54 synthesis, 44 47-49 rhomboidal, 44 75-82 solid-state clusters and, 44 66-72, 74-75, 80-82, 85-87 tetrahedral, 44 72-75 triangular, 44 82-87 cofactor, 40 2, 4-12 anaerobic isolation, 40 5 molybdopterin and, 40 4-8 reduced form, 40 12 synthesis, 40 8-12 xanthine oxidase, 45 60-63 complexes... [Pg.188]

NMR spectra heteronuclear gold cluster compounds, 39 345-348 Phalaris canariensis esophageal cancer, 36 144-145 scanning proton microprobe, 36 149 structural motifs of silicas, 36 146 Pharmaceuticals, 18 177 Phase transitions, in chalcogenide halide compounds, 23 332, 408, 412 [PhCHjMejNAlHjlj, 41 225-226 [(PhCH2)jNLi]3 molecular structure, 37 94, 96 in solution, 37 107-108... [Pg.232]

Its molecular structure (Figure 37) consists of a centrosymmetric dimer with a bridging H2Al(OR)( U-OR)2Al(OR)H2 entity. The Ta atoms are approximately square pyramidal, with the four phosphorus atoms forming the basal plane (Ta lies 0.64 A out of it). The relatively short Ta—A1 distances are comparable to those found in other transition metal aluminum complexes (Ta—Al 2.79-3.13 A). The hydrogen atoms have not been located, but were evidenced by chemical and spectroscopic techniques (IR 1605, 1540 cm 1 HNMR 16.30p.p.m.). The Ta—(ju-H2)A1 unit is relatively stable, and (54) is inert to carbon monoxide or trimethylamine. It is a poor catalyst in the isomerization of 1-pentene. Formation of complexes analogous to (54) may explain the low yields often obtained from alkoxoaluminohy-drides and metal halides. [Pg.680]

We have prepared a number of acylium ions on metal halide powders and measured the principal components of their chemical shift tensors (43-45). Most of these cations have isotropic l3C shifts of 154 1 ppm. Often insensitivity to substituents results from opposite and offsetting variations in the principal components. The acetylium ion has an axially symmetric chemical shift tensor because of its C3 rotation axis. When the symmetry is reduced from C3v to C2v or lower, a nonzero 27 value may be observed. The sensitivity of chemical shift tensors to symmetry is a powerful means of probing molecular structure and temperature-dependent molecular dynamics. Multiple orders of spinning sidebands may offend those who seek solution-like NMR spectra of solids, but discarding most of the information inherent in the chemical shift is a considerable concession to aesthetics. [Pg.128]

Reactions of limited proportions of amine and phosphine Lewis bases with non-molecular copper and silver halides generate crystalline cubanes. Crystallographic determinations of molecular structure have been reported for at least 31 complexes with cf or d10 metal configurations, spanning the following types or homologous series of compounds. Compilations of data occur in references 157, 158 and 167. [Pg.153]

The homoleptic derivatives of Mo and W(VI) are rather scarcely studied. The only structurally characterized complex, W(OMe)5, possesses the molecular structure analogous to those of alkoxide halids, i.e. a dimer built up of two edge-sharing octahedra. The structure of monooxo homometallic derivatives is unknown and their individuality appears questionable. The only dioxocom-plex of molybdenum(V) isolated as pyridin solvate demonstrates the [Ti(OMe)w]-type structure (Table 12.19). [Pg.426]

In addition to the bimetallic complexes of rhenium and alkaline metals formed as byproducts in the exchange reactions of rhenium halids with alkali alkoxides (such as, for example, LiReO(OPr )5 xLiCl(THF)2 [519]) there has been recently prepared a number ofbimetallic complexes ofrhenium and molybdenum, rhenium and tungsten, and rhenium and niobium [904, 1451]. The latter are formed either due to the formation of a metal-metal bond, arising due to combination of a free electron pair on rhenium (V) and a vacant orbital of molybdenum (VI) atom or via insertion of molybdenum or tungsten atoms into the molecular structure characteristic of rhenium (V and VI) oxoalkox-ides. The formation of the compounds with variable composition becomes possible in the latter case. [Pg.475]


See other pages where Halides molecular structure is mentioned: [Pg.299]    [Pg.558]    [Pg.560]    [Pg.1215]    [Pg.165]    [Pg.330]    [Pg.378]    [Pg.382]    [Pg.660]    [Pg.251]    [Pg.86]    [Pg.14]    [Pg.151]    [Pg.473]    [Pg.383]    [Pg.236]    [Pg.324]    [Pg.32]    [Pg.288]    [Pg.809]    [Pg.48]    [Pg.84]    [Pg.118]    [Pg.119]    [Pg.189]    [Pg.164]    [Pg.195]    [Pg.112]    [Pg.170]    [Pg.73]    [Pg.285]    [Pg.140]    [Pg.140]    [Pg.2341]    [Pg.303]   
See also in sourсe #XX -- [ Pg.20 , Pg.21 , Pg.22 , Pg.23 , Pg.31 , Pg.32 , Pg.46 ]




SEARCH



Group 5 metal halide clusters molecular structure

© 2024 chempedia.info