Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides, aryl, arylation coupling with active

The general catalytic cycle for the coupling of aryl-alkenyl halides with alkenes is shown in Fig. 9.6. The first step in this catalytic cycle is the oxidative addition of aryl-alkenyl halides to Pd(0). The activity of the aryl-alkenyl halides still follows the order RI > ROTf > RBr > RC1. The olefin coordinates to the Pd(II) species. The coordinated olefin inserts into Pd—R bond in a syn fashion, p-Hydrogen elimination can occur only after an internal rotation around the former double bond, as it requires at least one /I-hydrogen to be oriented syn perpendicular with respect to the halopalladium residue. The subsequent syn elimination yields an alkene and a hydridopalladium halide. This process is, however, reversible, and therefore, the thermodynamically more stable (E)-alkene is generally obtained. Reductive elimination of HX from the hydridopalladium halide in the presence of a base regenerates the catalytically active Pd(0), which can reenter the catalytic cycle. The oxidative addition has frequently assumed to be the rate-determining step. [Pg.486]

This reaction is similar to 13-1 and, like that one, generally requires activated substrates. With unactivated substrates, side reactions predominate, though aryl methyl ethers have been prepared from unactivated chlorides by treatment with MeO in HMPA. This reaction gives better yields than 13-1 and is used more often. A good solvent is liquid ammonia. The compound NaOMe reacted with o- and p-fluoronitrobenzenes 10 times faster in NH3 at — 70°C than in MeOH. Phase-transfer catalysis has also been used. The reaction of 4-iodotoluene and 3,4-dimethylphenol, in the presence of a copper catalyst and cesium carbonate, gave the diaryl ether (Ar—O—Ar ). Alcohols were coupled with aryl halides in the presence of palladium catalysts to give the Ar—O—R ether. Nickel catalysts have also been used. ... [Pg.862]

The coupling of thiols with aryl halides has been recently reported using Ni(NHC)2 complexes [171]. After screening different pre-catalysts, compound 28 showed the best behaviour in terms of activity and substrate scope, allowing the coupling of electron rich and poor aryl bromides with aryl or alkyl thiols (Scheme 6.52). [Pg.184]

Indoles, pyrroles, and carbazoles themselves are suitable substrates for palladium-catalyzed coupling with aryl halides. Initially, these reactions occurred readily with electron-poor aryl halides in the presence of palladium and DPPF, but reactions of unactivated aryl bromides were long, even at 120 °C. Complexes of sterically hindered alkylmonophosphines have been shown to be more active catalysts (Equation (25)). 8 102 103 In the presence of these more active catalysts, reactions of electron-poor or electron-rich aryl bromides and electron-poor or electron-neutral aryl chlorides occurred at 60-120 °C. Reactions catalyzed by complexes of most of the /-butylphosphines generated a mixture of 1- and 3-substituted indoles. In addition, 2- and 7-substituted indoles reacted with unhindered aryl halides at both the N1 and C3 positions. The 2-naphthyl di-t-butylphosphinobenzene ligand in Equation (25), however, generated a catalyst that formed predominantly the product from A-arylation in these cases. [Pg.380]

A more recent publication by Weigand and Pelka has disclosed a polymer-bound Buchwald-Hartwig amination [40], Activated, electron-deficient aryl halides were coupled with conventional PS Rink resin under microwave irradiation. Subsequent acidic cleavage afforded the desired aryl amines in moderate to good yields (Scheme 7.22). Commercially available Fmoc-protected Rink amide resin was suspended in 20% piperidine/N,N-dimethylformamide at room temperature for 30 min to achieve deprotection. After washing and drying, the resin was placed in a silylated microwave vessel and suspended in dimethoxyethane (DME)/tert-butanol... [Pg.309]

Catalytic processes based on the use of electrogenerated nickel(O) bipyridine complexes have been a prominent theme in the laboratories of Nedelec, Perichon, and Troupel some of the more recent work has involved the following (1) cross-coupling of aryl halides with ethyl chloroacetate [143], with activated olefins [144], and with activated alkyl halides [145], (2) coupling of organic halides with carbon monoxide to form ketones [146], (3) coupling of a-chloroketones with aryl halides to give O -arylated ketones [147], and (4) formation of ketones via reduction of a mixture of a benzyl or alkyl halide with a metal carbonyl [148]. [Pg.229]

Fluorosilylsubstituted aryl derivatives were found to be useful reagents for carbon-carbon bond formation via palladium-catalyzed cross-coupling with aryl halides in the presence of fluoride anions as Si—C bond activator in dimethylformamide (DMF), as well as rhodium-catalyzed 1,4-addition to a, 3-unsaturated ketones in the presence of a fluoride anion source (Equation 14.11) [66, 69, 70],... [Pg.360]

Cross coupling between an aryl halide and an activated alkyl halide, catalysed by the nickel system, is achieved by controlling the rate of addition of the alkyl halide to the reaction mixture. When the aryl halide is present in excess, it reacts preferentially with the Ni(o) intermediate whereas the Ni(l) intermediate reacts more rapidly with an activated alkyl halide. Thus continuous slow addition of the alkyl halide to the electrochemical cell already charged with the aryl halide ensures that the alkyl-aryl coupled compound becomes the major product. Activated alkyl halides include benzyl chloride, a-chloroketones, a-chloroesters and amides, a-chloro-nitriles and vinyl chlorides [202, 203, 204], Asymmetric induction during the coupling step occurs with over 90 % distereomeric excess from reactions with amides such as 62, derived from enantiomerically pure (-)-ephedrine, even when 62 is a mixture of diastereoisomcrs prepared from a racemic a-chloroacid. Metiha-nolysis of the amide product affords the chiral ester 63 and chiral ephedrine is recoverable [205]. [Pg.140]

The Heck reaction is a C-C coupling reaction where an unsaturated hydrocarbon or arene halide/triflate/sulfonate reacts with an alkene in presence of a base and Pd(0) catalyst so as to form a substituted alkene. Kaufmann et al. showed that the Heck reaction carried out in presence of ILs such as tetra-alkyl ammonium and phosphonium salts without the phosphine ligands, resulted in high yields of product. They attributed the activity to the stabilizing effect of ammonium and phosphonium salts on Pd(0) species. Carmichael et al. used ionic liquids containing either A,A -dialkylimidazolium and A-alkylpyridinium cations with anions such as halide, hexafluorophosphate or tetrafiuoroborate to carry out reactions of aryl halide and benzoic anhydride with ethyl and butyl acrylates in presence of Pd catalyst. An example of iodobenzene reacting with ethyl acrylate to give trans-et vy cinnamate is shown in Scheme 14. [Pg.168]

Electroreduction of the cobalt(II) salt in a mixture of either dimethylform-amide-pyridine or acetonitrile-pyridine as solvent, often in the presence of bipyridine, produces a catalytically active cobalt(I) complex which is believed to be cobalt(I) bromide with attached bipyridine ligands (or pyridine moieties in the absence of bipyridine). As quickly as it is electrogenerated, the active catalyst reduces an aryl halide, after which the resulting aryl radical can undergo coupling with an acrylate ester [141], a different aryl halide (to form a biaryl compound) [142], an activated olefin [143], an allylic carbonate [144], an allylic acetate [144, 145], or a... [Pg.551]

In 2002, Furstner and coworkers reported that aryl halides react with Grignard reagents under the conditions previously used for the coupling of alkenyl halides. They proposed that the active iron species is Fe(MgX)2, a complex described by Bogdanovic and coworkers ° a few years earlier (Scheme 30). This iron(-II) species is formed by addition of four equivalents of the Grignard compounds to FeCl2. [Pg.610]

Thienylstannanes were also coupled with a series of reagents other, than conventional aryl halides. 2,2 -Bithiophene was prepared from the thienyliodonium salt shown in 6.34. and 2-tributylstannylthiophene. The activity of the iodonium salt allows for the room temperature coupling of the reagents in the presence of only 0.5 mol% palladium dichloride in a coordinating solvent mixture to give an excellent yield of the desired product.48... [Pg.110]

Unsymmetrical biaryls.14 The Pd(0)- or Ni(0)-catalyzed coupling of arylzinc derivatives with aryl halides appears to be the method of choice for synthesis of unsymmetrical biaryls (equation I). Both Pd[P(C6H5)3]4 and Ni[P(C6H5)3]4 are usually equally effective with aryl iodides, but only activated aryl bromides can be coupled with Pd(0). [Pg.294]


See other pages where Halides, aryl, arylation coupling with active is mentioned: [Pg.537]    [Pg.322]    [Pg.453]    [Pg.597]    [Pg.1039]    [Pg.218]    [Pg.240]    [Pg.111]    [Pg.24]    [Pg.538]    [Pg.541]    [Pg.868]    [Pg.109]    [Pg.183]    [Pg.198]    [Pg.238]    [Pg.239]    [Pg.650]    [Pg.241]    [Pg.390]    [Pg.514]    [Pg.115]    [Pg.115]    [Pg.133]    [Pg.98]    [Pg.1022]    [Pg.166]    [Pg.11]    [Pg.12]    [Pg.17]    [Pg.116]    [Pg.127]    [Pg.373]    [Pg.790]    [Pg.452]    [Pg.661]    [Pg.157]    [Pg.470]   


SEARCH



Activations halides

Active arylation

Active coupling

Aryl coupling

Coupling with aryl halides

Halides active

Halides, aryl coupling

Halides, aryl, arylation coupling

Halides, aryl, with active

With aryl halides

© 2024 chempedia.info