Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Guanidines chiral catalysts

Corey, E. J. Grogan, M. J. Enantioselective Synthesis of a-Amino Nitriles from N-Benzhydryl Imines and HCN with a Chiral Bicyclic Guanidine as Catalyst Org Lett. 1999,1,157-160. [Pg.88]

In addition to this highly enantioselective metal-catalyzed approach, several orga-nocatalytic versions of the asymmetric nitroaldol reaction have recently been reported. The Najera group used enantiomerically pure guanidines with and without C2 symmetry as chiral catalysts for the addition of nitromethane to aldehydes [126], When the reaction was conducted at room temperature yS-nitro alcohols of type 120 were obtained in yields of up to 85% but enantioselectivity, 26% ee or below, was low. A selected example is given in Scheme 6.52. Higher enantioselectivity, 54% ee, can be obtained at a low reaction temperature of —65 °C, but the yield (33%) is much lower. [Pg.176]

Similar chiral catalysts 7 were used in the Michael addition of glycine derivatives to acrylic esters to obtain functionalised oc-aminoacids5 here, the guanidines were prepared from chiral amines or diamines in one step but using cyanogen bromide, which is a noxious reagent (Figure 4). [Pg.134]

Corey EJ, Grogan MJ (1999) Enantioselective synthesis of alpha-amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst. Org Lett 1 157-160... [Pg.246]

Excellent conversions and selectivities were observed both with respect to the alkene and the primary oxidant [62]. In nitro-Michael reaction it was noted that the Murphy s PTC does not work as a good chiral catalyst for the Michael reaction of chalcone, but the same PTC effectively catalyses the epoxidation of chalcones with sodium hypochlorite (NaOCl) [24c]. Trials for the epoxidation of chalcone in the combination of hydroperoxides and modified guanidines 19 [27b] resulted in less effective asymmetric induction compared to the Murphy s PTC [53] (Scheme 4.21). [Pg.111]

Davis, A.P. and Dempsey, K.J. (1995) Synthesis and investigation of a hindered, chiral, bicylic guanidine. Tetrahedron Asymmetry, 6, 2829-2840 Corey, E.J. and Grogan, M.J. (1999) Enantioselective s)mthesis of a-amino nitriles from A-henzhydry 1 imines and HCN with a chiral bicyclic guanidine as catalyst. Organic Letters, 1, 157-160. [Pg.137]

The wide applicability of the PK reaction is apparent in the synthesis of pyrroles, for example, 45, en route to novel chiral guanidine bases, levuglandin-derived pyrrole 46, lipoxygenase inhibitor precursors such as 47, pyrrole-containing zirconium complexesand iV-aminopyrroles 48 from 1,4-dicarbonyl compounds and hydrazine derivatives. The latter study also utilized Yb(OTf)3 and acetic acid as pyrrole-forming catalysts, in addition to pyridinium p-toluenesulfonate (PPTS). [Pg.85]

Keywords Asymmetric organocatalysis Bifunctional catalyst Brpnsted base Chiral scaffold Cinchona akaloid Cyclohexane-diamine Guanidine... [Pg.145]

While the significance of the bifunctional Brpnsted base catalysts has been illustrated in the previous sections, few examples rely solely on a Brpnsted base interaction for asymmetric catalysis. However, in the past few decades, a novel catalyst system has emerged as a powerful promoter of chiral transformations. The guanidines have gained the reputation as super bases in organic transformations. [Pg.185]

The chiral guanidine s role as a strong Brpnsted base for the reactions of protic substrates has been proposed. In 1999, Corey developed a C -symmetric chiral guanidine catalyst to promote the asymmetric Strecker reaction [117]. The addition of HCN to imines was promoted high yields and high enantioselectivities for both electron-withdrawing and electron-donating aromatic imines (Scheme 64). [Pg.186]

Ma and co-workers extended use of chiral guanidine catalysts to the addition of glycine derivatives to acrylates [121], Addition products were achieved in high yield with modest enantioselectivity (Scheme 67). The ferf-butyl glycinate benzophenone imines generally provided better enantiomeric ratios than the ethyl glycinate benzophenone imines. Based on this observation, the authors hypothesized that an imine-catalyst complex determines the stereochemical outcome of the product. [Pg.189]

Another structurally modified guanidine was reported by Ishikawa et al. as a chiral superbase for asymmetric silylation of secondary alcohols [122]. Soon after, Ishikawa discovered that the same catalyst promoted asymmetric Michael additions of glycine imines to acrylates [123]. The additions were promoted in good yield and great asymmetric induction under neat reaction conditions with guanidine catalyst 250 (Scheme 68). The authors deduced that the high conversion and selectivity were due to the relative configuration of the three chiral centers of the catalyst in... [Pg.189]

Ishikawa and co-workers also reported a class of structurally modified guanidines for promotion of the asymmetric Michael reaction of ierf-butyl-diphenylimino-acetate to ethyl acrylate [124,125]. In addition to a polymer support design (Scheme 69), an optical resolution was developed to achieve chiral 1,2-substituted ethylene-l,2-di-amines, a new chiral framework for guanidine catalysis. The authors discovered that incorporating steric bulk and aryl substituents in the catalyst did improve stereoselec-tivitity, although the reactivity did suffer (Scheme 70, Table 4). [Pg.190]

Terada and co-workers reported a novel guanidine catalyst with a chiral binaphthol backbone for the asymmetric addition of dicarbonyl compounds to nitro-olefins [126]. Substitution on the binaphthol backbone dramatically increased enantioselectivity. [Pg.190]

Ooi has recently reported application of chiral P-spiro tetraaminophosphonium salt 37 as a catalyst for the highly enantio- and diasterioselective direct Henry reaction of a variety of aliphatic and aromatic aldehydes with nitroalkanes (Scheme 5.51) [92]. Addihon of the strong base KO Bu generates in situ the corresponding catalyhcally active triaminoiminophosphorane base A. Ensuing formation of a doubly hydrogen-bonded ion pair B positions the nitronate for stereoselective addition to the aldehyde. This catalyst system bears many similarities to guanidine base catalysis. [Pg.109]

The axially chiral guanidine catalyst (155) (0.4-5 mol%) has been developed to facilitate the highly enantioselective Michael addition of 1,3-dicarbonyl compounds (g to a broad range of conjugated nitroalkenes (<98% ee).211... [Pg.358]

Chiral bicyclic guanidine (221) has been identified as an excellent catalyst for reactions between anthrones (219) and various dienophiles, such as (220). The catalyst can tolerate a range of substituents and substitution patterns, making several anthrone derivatives suitable for this reaction. Both Diels-Alder and Michael adducts were obtained in excellent yields, high regioselectivities, and high enantioselectivities (<99% ee). This is the first case of a highly enantioselective base-catalysed anthrone Diels-Alder reaction.263... [Pg.370]

Corey and Grogan recently developed a novel catalytic enantioselective Strecker reaction which utilized the readily available chiral C2-symmetric guanidine 19 as a bifunc-tional catalyst [12], The addition of hydrogen cyanide to achiral aromatic and aliphatic N-benzhydrylimines 18 gave N-benzhydryl-a-aminonitriles 20 (Scheme 7), which were readily converted to the corresponding amino acids with 6 N HCI. The use of N-benzyl- or N-fluorenylimines afforded products of poor enantiomeric purity. [Pg.190]

Scheme 7. Asymmetric Strecker synthesis with chiral guanidine catalyst 19 (Corey and Grogan). Scheme 7. Asymmetric Strecker synthesis with chiral guanidine catalyst 19 (Corey and Grogan).

See other pages where Guanidines chiral catalysts is mentioned: [Pg.122]    [Pg.101]    [Pg.104]    [Pg.106]    [Pg.157]    [Pg.86]    [Pg.186]    [Pg.133]    [Pg.132]    [Pg.133]    [Pg.382]    [Pg.402]    [Pg.122]    [Pg.205]    [Pg.121]    [Pg.146]    [Pg.185]    [Pg.192]    [Pg.105]    [Pg.308]    [Pg.309]    [Pg.309]    [Pg.315]    [Pg.139]    [Pg.405]    [Pg.24]    [Pg.249]    [Pg.230]   
See also in sourсe #XX -- [ Pg.356 , Pg.357 ]




SEARCH



Chiral catalysts

Chiral guanidine

Guanidine catalysts

Guanidine catalysts, chiral

© 2024 chempedia.info