Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Group II Metal Derivatives

Only a limited number of structural studies have been reported on beryllium compounds. The simple alkyls appear to be polymeric with chain structures as shown in XVI (109). For comparison, the structure of di-(t-butyl)beryllium (XVII) is shown as determined from electron diffraction studies (6). In this case, the compound is a linear monomeric species with a Be—C bond length of 1.699 A. Similarly, dimethylberyl-lium has a Be—C bond distance of 1.70 A in the gas phase (5). Comparison of these beryllium structures with the polymer shows that the Be—C distance in the bridge is considerably greater than that in a normal Be—C single bond, a result similar to that observed for the aluminum derivatives. [Pg.252]

A further point of interest is that in both the dimeric and trimeric species shown, the beryllium atom still has a vacant orbital available which may be used in adduct formation without disruption of the electron-deficient bond. This type of behavior leads to the formation of dimers with four-coordinate beryllium atoms, e.g., structure XX (86). This structure has been determined in the solid state and shows that the phenylethynyl-bridging group is tipped to the side, but to a much smaller extent than observed in the aluminum derivative (112). One cannot be certain whether the distortion in this case is associated with a it - metal interaction or is simply a result of steric crowding, crystal packing, or the formation of the coordination complexes. Certainly some differences must have occurred since both the Be—Be distance and Be—C—Be angle are substantially increased in this compound relative to those observed in the polymer chain. [Pg.253]

The structural data for these systems are collected in Table V along with data for several other beryllium derivatives including the simple hydrides that also form electron-deficient bridged systems of high stability. [Pg.253]

Limited theoretical studies (31, 89) on the electron-deficient beryllium derivatives have been interpreted to imply that extensive Be—Be bonding occurs. If such bonding does occur, the increased bond length observed in the phenylethynyl(methyl)beryllium trimethylamine adduct takes on additional significance since the Be—Be distance in this derivative is increased by almost 0.3 A over that observed in dimethyl-and diethylberyllium. Moreover, if cyclic trimers are formed, then increased metal-metal distances would be likely, thus reducing the probability of stabilization of the bridged system by Be—Be bonding. Additional studies will be required both on structures and of spectroscopic properties of the species to answer these questions. [Pg.255]

The only magnesium compounds for which structures have been reported that contain electron-deficient bonds are those of dimethyl (123)- and diethylmagnesium (124). The structure common to these two derivatives is XXI, and the data for these compounds along with those from a variety of other organomagnesium derivatives are collected in Table VI for comparison. Clearly, insufficient data are available to draw any specific conclusions concerning the electron-deficient derivatives, but no unexpected deviations appear in the compounds studied. [Pg.255]


See other pages where Group II Metal Derivatives is mentioned: [Pg.235]    [Pg.251]   


SEARCH



Alkyl Derivatives of the Group II Metals

Alkyl Derivatives of the Group II Metals B. J. Wakefield

Derived group

Group II

Group II metals

Metallic derivates

Organic Derivatives of Group I and II Metals

Organogermanium Derivatives of Group II Metals

© 2024 chempedia.info