Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Group 18 elements covalent bonding

For low values of the valence electron concentration (VEC< 4 for main group elements), covalent 2c2e bonds are not sufficient to overcome the electron deficiency. We have the case of electron-deficient compounds . For these, relief comes from multicenter bonds. In a three-center two-electron bond (3c2e) three atoms share an electron pair. An even larger number of atoms can share one electron pair. With increasing numbers of... [Pg.138]

Many minerals contain anions that have more than one element covalently bonded to one another. Most of these anions are oxy anions that is, they contain some central element that is attached to one or more oxygen atoms. The entire group of atoms is a charged molecule. The names of these anions are given in Table 3. [Pg.9]

These apparent anomalies are readily explained. Elements in Group V. for example, have five electrons in their outer quantum level, but with the one exception of nitrogen, they all have unfilled (I orbitals. Thus, with the exception of nitrogen. Group V elements are able to use all their five outer electrons to form five covalent bonds. Similarly elements in Group VI, with the exception of oxygen, are able to form six covalent bonds for example in SF. The outer quantum level, however, is still incomplete, a situation found for all covalent compounds formed by elements after Period 2. and all have the ability to accept electron pairs from other molecules although the stability of the compounds formed may be low. This... [Pg.40]

In Group III, boron, having no available d orbitals, is unable to fill its outer quantum level above eight and hence has a maximum covalency of 4. Other Group 111 elements, however, are able to form more than four covalent bonds, the number depending partly on the nature of the attached atoms or groups. [Pg.42]

Chemical covalent bonding. The formation of covalent chemical bonds between elements at an interface may be an important factor. Such direct chemical bonding would greatly enhance interfacial adhesion, but specific chemical functional groups are required for the reactions to occur. [Pg.1011]

The hydrides of the later main-group elements present few problems of classification and are best discussed during the detailed treatment of the individual elements. Many of these hydrides are covalent, molecular species, though association via H bonding sometimes occurs, as already noted (p. 53). Catenation flourishes in Group 14 and the complexities of the boron hydrides merit special attention (p. 151). The hydrides of aluminium, gallium, zinc (and beryllium) tend to be more extensively associated via M-H-M bonds, but their characterization and detailed structural elucidation has proved extremely difficult. [Pg.67]

Organic chemistry, then, is the study of carbon compounds. But why is carbon special Why, of the more than 30 million presently known chemical compounds, do more than 99% of them contain carbon The answers to these questions come from carbon s electronic structure and its consequent position in the periodic table (Figure 1.1). As a group 4A element, carbon can share four valence electrons and form four strong covalent bonds. Furthermore, carbon atoms can bond to one another, forming long chains and rings. Carbon, alone of all elements, is able to form an immense diversity of compounds, from the... [Pg.3]

These structures (without the circles) are referred to as Lewis structures. In writing Lewis structures, only the valence electrons written above are shown, because they are the ones that participate in covalent bonding. For the main-group elements, the only ones dealt with here, the number of valence electrons is equal to the last digit of the group number in the periodic table (Table 7.1). Notice that elements in a given main group all have the same number of valence electrons. This explains why such elements behave similarly when they react to form covalently bonded species. [Pg.167]

Beryllium, at the head of Group 2, resembles its diagonal neighbor aluminum in its chemical properties. It is the least metallic element of the group, and many of its compounds have properties commonly attributed to covalent bonding. Beryllium is amphoteric and reacts with both acids and alkalis. Like aluminum, beryllium reacts with water in the presence of sodium hydroxide the products are the beryl-late ion, Be(OH)42, and hydrogen ... [Pg.714]

B Aluminum forms an amphoteric oxide in which it has the oxidation state +3 therefore, aluminum is the element. 14.3B Hydrogen is a nonmetal and a diatomic gas at room temperature. It has an intermediate electronegativity (x — 2.2), so it forms covalent bonds with nonmetals and forms anions in combination with metals. In contrast, Group 1 elements are solid metals that have low electronegativities and form cations in combination with nonmetals. [Pg.979]


See other pages where Group 18 elements covalent bonding is mentioned: [Pg.203]    [Pg.401]    [Pg.419]    [Pg.272]    [Pg.175]    [Pg.272]    [Pg.200]    [Pg.401]    [Pg.419]    [Pg.270]    [Pg.111]    [Pg.2391]    [Pg.2398]    [Pg.41]    [Pg.139]    [Pg.343]    [Pg.1291]    [Pg.53]    [Pg.195]    [Pg.67]    [Pg.223]    [Pg.407]    [Pg.159]    [Pg.340]    [Pg.754]    [Pg.14]    [Pg.78]    [Pg.156]    [Pg.119]    [Pg.662]    [Pg.724]    [Pg.743]    [Pg.1012]    [Pg.344]    [Pg.58]    [Pg.2]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



Bonded elements

Bonding elements

Elemental Bonds

Elemental covalent

Elements bonds)

© 2024 chempedia.info