Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass-transition temperature blending

More recently, test products were created of a blend of PMMA with a phenyl-substituted methacrylate these products have a glass-transition temperature of around 125°C, a significantly reduced water absorption compared to pure PMMA of about 0.32%, but also a higher birefringence (a stress-optic coefficient of 5.2 X 10 , compared with 0.3 X 10 for PMMA and 6.8 x 10 for BPA-PC). [Pg.161]

Polycarbonate—polyester blends were introduced in 1980, and have steadily increased sales to a volume of about 70,000 t. This blend, which is used on exterior parts for the automotive industry, accounting for 85% of the volume, combines the toughness and impact strength of polycarbonate with the crystallinity and inherent solvent resistance of PBT, PET, and other polyesters. Although not quite miscible, polycarbonate and PBT form a fine-grained blend, which upon analysis shows the glass-transition temperature of the polycarbonate and the melting point of the polyester. [Pg.290]

Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ... Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ...
Alloys exhibit physical properties, the values of which are typically the weighted average of those of its constituents. In particular, the blend exhibits a single glass-transition temperature, often closely obeying semitheoretically derived equations. Blends of two compatibiLized immiscible polymers exhibit physical properties which depend on the physical arrangement of the constituents and thus maybe much closer to those of one of the parent resins. They will also typically exhibit the two glass-transition temperatures of their constituent resins. [Pg.277]

Before providing such an explanation it should first be noted that progressive addition of a plasticiser causes a reduction in the glass transition temperature of the polymer-plasticiser blend which eventually will be rubbery at room temperature. This suggests that plasticiser molecules insert themselves between polymer molecules, reducing but not eliminating polymer-polymer contacts and generating additional free volume. With traditional hydrocarbon softeners as used in diene rubbers this is probably almost all that happens. However, in the... [Pg.88]

Tackifying resins enhance the adhesion of non-polar elastomers by improving wettability, increasing polarity and altering the viscoelastic properties. Dahlquist [31 ] established the first evidence of the modification of the viscoelastic properties of an elastomer by adding resins, and demonstrated that the performance of pressure-sensitive adhesives was related to the creep compliance. Later, Aubrey and Sherriff [32] demonstrated that a relationship between peel strength and viscoelasticity in natural rubber-low molecular resins blends existed. Class and Chu [33] used the dynamic mechanical measurements to demonstrate that compatible resins with an elastomer produced a decrease in the elastic modulus at room temperature and an increase in the tan <5 peak (which indicated the glass transition temperature of the resin-elastomer blend). Resins which are incompatible with an elastomer caused an increase in the elastic modulus at room temperature and showed two distinct maxima in the tan <5 curve. [Pg.620]

Fig. 23. Evolution of the glass transition temperature of polychloroprene-aromatic hydrocarbon resin blends as a function of the resin content. values were obtained from DSC experiments. Fig. 23. Evolution of the glass transition temperature of polychloroprene-aromatic hydrocarbon resin blends as a function of the resin content. values were obtained from DSC experiments.
Differential scanning calorimetry (DSC) is fast, sensitive, simple, and only needs a small amount of a sample, therefore it is widely used to analyze the system. For example, a polyester-based TPU, 892024TPU, made in our lab, was blended with a commercial PVC resin in different ratios. The glass transition temperature (Tg) values of these systems were determined by DSC and the results are shown in Table 1. [Pg.138]

Small amounts (usually <10%) of plasticizer could be used in the blending system to improve the processing properties of the material by lowering the melting and glass-transition temperatures. The addition of liquid plasticizer also makes the material soft but at the same time, the strength and toughness of the material decreases. [Pg.140]

Park et al. [20] reported on the synthesis of poly-(chloroprene-co-isobutyl methacrylate) and its compati-bilizing effect in immiscible polychloroprene-poly(iso-butyl methacrylate) blends. A copolymer of chloroprene rubber (CR) and isobutyl methacrylate (iBMA) poly[CP-Co-(BMA)] and a graft copolymer of iBMA and poly-chloroprene [poly(CR-g-iBMA)] were prepared for comparison. Blends of CR and PiBMA are prepared by the solution casting technique using THF as the solvent. The morphology and glass-transition temperature behavior indicated that the blend is an immiscible one. It was found that both the copolymers can improve the miscibility, but the efficiency is higher in poly(CR-Co-iBMA) than in poly(CR-g-iBMA),... [Pg.638]

The most desirable annealing temperatures for amorphous plastics, certain blends, and block copolymers is just above their glass transition temperature (Tg) where the relaxation of stress and orientation is the most rapid. However, the required temperatures may cause excessive distortion and warping. [Pg.126]

In particular, blends of PVDF with a series of different polymers (polymethylmethacrylate [100-102], polyethylmethacrylate [101], polyvinyl acetate [101]), for suitable compositions, if quenched from the melt and then annealed above the glass transition temperature, yield the piezoelectric [3 form, rather than the normally obtained a form. The change in the location of the glass transition temperature due to the blending, which would produce changes in the nucleation rates, has been suggested as responsible for this behavior. A second factor which was identified as controlling this behavior is the increase of local /rans-planar conformations in the mixed amorphous phase, due to specific interactions between the polymers [102]. [Pg.206]

For the case of the crystallization from the amorphous phase, the blending with PPO for lower contents (less than 30wt%) favours the obtainment of the a" ordered modification with respect to the a disordered modification, which is obtained for the unblended polymer. For higher PPO contents the obtainment of the p form is favored [105]. This behavior would be simply due to the increases of the glass transition temperature, and hence of the crystallization temperature on heating, which correspond to increased PPO contents in the blends [105],... [Pg.206]

Glass transition temperature (Tg), measured by means of dynamic mechanical analysis (DMA) of E-plastomers has been measured in binary blends of iPP and E-plastomer. These studies indicate some depression in the Tg in the binary, but incompatible, blends compared to the Tg of the corresponding neat E-plastomer. This is attributed to thermally induced internal stress resulting from differential volume contraction of the two phases during cooling from the melt. The temperature dependence of the specific volume of the blend components was determined by PVT measurement of temperatures between 30°C and 270°C and extrapolated to the elastomer Tg at —50°C. [Pg.175]

Reactive compatibilization can also be accomplished by co-vulcanization at the interface of the component particles resulting in obliteration of phase boundary. For example, when cA-polybutadiene is blended with SBR (23.5% styrene), the two glass transition temperatures merge into one after vulcanization. Co-vulcanization may take place in two steps, namely generation of a block or graft copolymer during vulcanization at the phase interface and compatibilization of the components by thickening of the interface. However, this can only happen if the temperature of co-vulcanization is above the order-disorder transition and is between the upper and lower critical solution temperature (LCST) of the blend [20]. [Pg.301]


See other pages where Glass-transition temperature blending is mentioned: [Pg.388]    [Pg.388]    [Pg.545]    [Pg.163]    [Pg.151]    [Pg.408]    [Pg.415]    [Pg.57]    [Pg.498]    [Pg.351]    [Pg.28]    [Pg.29]    [Pg.31]    [Pg.544]    [Pg.139]    [Pg.271]    [Pg.277]    [Pg.502]    [Pg.566]    [Pg.618]    [Pg.620]    [Pg.624]    [Pg.471]    [Pg.472]    [Pg.473]    [Pg.591]    [Pg.594]    [Pg.598]    [Pg.653]    [Pg.655]    [Pg.144]    [Pg.388]    [Pg.63]    [Pg.33]    [Pg.34]    [Pg.172]   
See also in sourсe #XX -- [ Pg.106 , Pg.107 ]




SEARCH



Temperature blends

© 2024 chempedia.info