Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal geometric structures

A distinction between a solid and liquid is often made in terms of the presence of a crystalline or noncrystalline state. Crystals have definite lines of cleavage and an orderly geometric structure. Thus, diamond is crystalline and solid, while glass is not. The hardness of the substance does not determine the physical state. Soft crystals such as sodium metal, naphthalene, and ice are solid while supercooled glycerine or supercooled quartz are not crystalline and are better considered to be supercooled liquids. Intermediate between the solid and liquid are liquid crystals, which have orderly structures in one or two dimensions,4 but not all three. These demonstrate that science is never as simple as we try to make it through our classification schemes. We will see that thermodynamics handles such exceptions with ease. [Pg.4]

This allows a direct influence of the alloying component on the electronic properties of these unique Pt near-surface formations from subsurface layers, which is the crucial difference in these materials. In addition, the electronic and geometric structures of skin and skeleton were found to be different for example, the skin surface is smoother and the band center position with respect to the metallic Fermi level is downshifted for skin surfaces (Fig. 8.12) [Stamenkovic et al., 2006a] owing to the higher content of non-Pt atoms in the second layer. On both types of surface, the relationship between the specific activity for the oxygen reduction reaction (ORR) and the tf-band center position exhibits a volcano-shape, with the maximum... [Pg.259]

Molecular sieves (zeolites) are artificially prepared aluminosilicates of alXali metals. The most common types for gas chromatography are molecular sieve 5A, a calcium aluminosilicate with an effective pore diameter of 0.5 nm, and molecular sieve 13X, a sodium aluminosilicate with an effective pore diameter of 1 nm. The molecular sieves have a tunnel-liXe pore structure with the pore size being dependent on the geometrical structure of the zeolite and the size of the cation. The pores are essentially microporous as the cross-sectional diameter of the channels is of similar dimensions to those of small molecules. This also contrilsutes to the enormous surface area of these materials. Two features primarily govern retention on molecular sieves. The size of the analyte idiich determines whether it can enter the porous... [Pg.109]

Geometric structure of the bare metal clusters and the complexes formed by reaction are unknown and present a significant experimental challenge. Chemical studies are starting to imply something about the structure of the products and will be invaluable until more direct chemical physics probes are available. [Pg.69]

Fig. 3.1. Left visible pump/X-ray probe scheme for femtosecond TRXRD experiments. Hard X-ray pulses are generated by shining intense femtosecond laser pulses on a metal target (laser plasma X-ray source). Right geometrical structure factor of bismuth as a function of inter-atomic distance for diffraction from (111) and (222) lattice planes. From [1] and [2]... Fig. 3.1. Left visible pump/X-ray probe scheme for femtosecond TRXRD experiments. Hard X-ray pulses are generated by shining intense femtosecond laser pulses on a metal target (laser plasma X-ray source). Right geometrical structure factor of bismuth as a function of inter-atomic distance for diffraction from (111) and (222) lattice planes. From [1] and [2]...
Purely dative coordination of H2 apparently requires a hypovalent metal complex, such as HfH4 or TaHs. Figure 4.59 displays the geometrical structures and leading donor-acceptor interactions resulting from coordination of H2 to these fragments. [Pg.490]

ELECTRONIC AND GEOMETRIC STRUCTURES OF METALS IN BIOLOGICAL SYSTEMS... [Pg.11]

Electronic and Geometric Structures of Metals in Biological Systems, 11... [Pg.364]

The chemistry of metal oxides can be understood only when their crystal structure is understood. Knowledge of the geometric structure is thus a prerequisite to understanding the properties of metal oxides. The bulk structure of polycrystalline solids can usually be determined by x-ray... [Pg.42]

Fig. 5.5. Geometrical structure of a close-packed metal surface. Left, the second-layer atoms (circles) and third-layer atoms (small dots) have little influence on the surface charge density, which is dominated by the top-layer atoms (large dots). The top layer exhibits sixfold symmetry, which is invariant with respect to the plane group p6mm (that is, point group Q, together with the translational symmetry.). Right, the corresponding surface Brillouin zone. The lowest nontrivial Fourier components of the LDOS arise from Bloch functions near the T and K points. (The symbols for plane groups are explained in Appendix E.)... Fig. 5.5. Geometrical structure of a close-packed metal surface. Left, the second-layer atoms (circles) and third-layer atoms (small dots) have little influence on the surface charge density, which is dominated by the top-layer atoms (large dots). The top layer exhibits sixfold symmetry, which is invariant with respect to the plane group p6mm (that is, point group Q, together with the translational symmetry.). Right, the corresponding surface Brillouin zone. The lowest nontrivial Fourier components of the LDOS arise from Bloch functions near the T and K points. (The symbols for plane groups are explained in Appendix E.)...
The description of bonding at transition metal surfaces presented here has been based on a combination of detailed experiments and quantitative theoretical treatments. Adsorption of simple molecules on transition metal surfaces has been extremely well characterized experimentally both in terms of geometrical structure, vibrational properties, electronic structure, kinetics, and thermo-chemistry [1-3]. The wealth of high-quality experimental data forms a unique basis for the testing of theoretical methods, and it has become clear that density functional theory calculations, using a semi-local description of exchange and correlation effects, can provide a semi-quantitative description of surface adsorption phenomena [4-6]. Given that the DFT calculations describe reality semi-quantitatively, we can use them as a basis for the analysis of catalytic processes at surfaces. [Pg.256]


See other pages where Metal geometric structures is mentioned: [Pg.37]    [Pg.3]    [Pg.245]    [Pg.96]    [Pg.119]    [Pg.21]    [Pg.30]    [Pg.219]    [Pg.63]    [Pg.593]    [Pg.85]    [Pg.419]    [Pg.449]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.111]    [Pg.299]    [Pg.150]    [Pg.130]    [Pg.153]    [Pg.167]    [Pg.240]    [Pg.17]    [Pg.28]    [Pg.78]    [Pg.1]    [Pg.245]    [Pg.15]    [Pg.17]    [Pg.211]    [Pg.408]    [Pg.748]    [Pg.494]    [Pg.99]   


SEARCH



Electronic and Geometric Structures of Metals in Biological Systems

Geometric calculations transition metal electronic structure

Geometric structure

Geometric structures, metals biological systems

Geometric structuring

Geometrical structure

© 2024 chempedia.info