Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Geometric properties molecular structures

In addition to the geometric, steric effects which flexibility directly modifles, all intramolecular electronic properties of a flexible molecule are also coupled to molecular structure. In a real material, such properties as molecular dipole. [Pg.29]

Geometric Examination. The polymer chemist needs to examine the various characteristics of the molecule in the molecular workspace. Bond lengths, bond angles and torsional angles can be measured for the current structure and compared to accepted values. In addition, other geometric properties can be computed like overall dimension, moments of inertia, molecular volume and surface area. [Pg.32]

In this chapter, the diverse coupling constants and MEC components identified in the combined electronic-nuclear approach to equilibrium states in molecules and reactants are explored. The reactivity implications of these derivative descriptors of the interaction between the electronic and geometric aspects of the molecular structure will be commented upon within both the EP and EF perspectives. We begin this analysis with a brief survey of the basic concepts and relations of the generalized compliant description of molecular systems, which simultaneously involves the electronic and nuclear degrees-of-freedom. Illustrative numerical data of these derivative properties for selected polyatomic molecules, taken from the recent computational analysis (Nalewajski et al., 2008), will also be discussed from the point of view of their possible applications as reactivity criteria and interpreted as manifestations of the LeChatelier-Braun principle of thermodynamics (Callen, 1962). [Pg.456]

It is especially important to investigate the molecular structure of coordination compounds in the vapor phase because the relatively weak coordination interactions may be considerably influenced by intermolecular interactions in solutions and especially in crystals. It has been shown that the geometrical variations can be correlated with other properties of the molecular complexes ). In particular the structural changes in the F3B N(CH3)3 and CI3B N(CH3)3 molecules ) relative to the respective monomeric species unambiguously indicated boron trichloride to be a stronger acceptor than boron trifluoride. Data on the geometry and force field have also been correlated ). [Pg.58]

Chemoinformatics is the science of determining those important aspects of molecular structures related to desirable properties for some given function. One can contrast the atomic level concerns of drug design where interaction with another molecule is of primary importance with the set of physical attributes related to ADME, for example. In the latter case, interaction with a variety of macromolecules provides a set of molecular filters that can average out specific geometrical details and allows significant models developed by consideration of molecular properties alone. [Pg.18]

Martin, Y.C., Danaher, E.B., May, C.S., and Weininger, D. MENTHOR, a database system for the storage and retrieval of three-dimensional molecular structures and associated data searchable by sub structural, biologic, physical, or geometric properties./. Comput.-Aided Mol. Des. 1998, 1, 15-29. [Pg.138]

The field of theoretical molecular sciences ranges from fundamental physical questions relevant to the molecular concept, through the statics and dynamics of isolated molecules, aggregates and materials, molecular properties and interactions, and the role of molecules in the biological sciences. Therefore, it involves the physical basis for geometric and electronic structure, states of aggregation, physical and chemical transformations, thermodynamic and kinetic properties, as well as unusual properties such as extreme flexibility or strong relativistic or quantum-field effects, extreme conditions such as intense radiation fields or interaction with the continuum, and the specificity ofbiochemical reactions. [Pg.429]

Computational quantum chemistry has emerged in recent years as a viable tool for the elucidation of molecular structure and molecular properties, especially for the prediction of geometrical parameters, kinetics and thermodynamics of highly labile compounds such as nitrosomethanides. However, they are difficult objects for both experimental (high toxicity, redox lability, high reactivity, explosive character etc.) and computational studies, even with today s sophisticated techniques (e.g. NO compounds are often species with open-shell biradical character which requires the application of multi-configuration methods). [Pg.656]

In contrast to a chemical property which can be measured, a molecular descriptor is computed from the molecular structure. Contained in the structural information are the atoms making up the molecule and their spatial arrangement. From the coordinates of the atoms, the geometric attributes (i.e., the size and shape of the molecule) can be deduced. A straightforward example is the molecular mass, which is computed by adding up the masses of the individual atoms making up the molecule and indicated in the elemental composition. The result is accurate since the atomic masses are independent of the chemical bonds with which they are involved. However, the molecular mass reflects few of the geometrical and chemical attributes of a compound and M is therefore a poor predictor for most properties. [Pg.12]

The basis of molecular modeling is that all important molecular properties, i. e., stabilities, reactivities and electronic properties, are related to the molecular structure (Fig. 1.1). Therefore, if it is possible to develop algorithms that are able to calculate a structure with a given stoichiometry and connectivity, it must be possible to compute the molecular properties based on the calculated structure, and vice versa. There are many different approaches and related computer programs, including ab-initio calculations, various semi-empirical molecular orbital (MO) methods, ligand field calculations, molecular mechanics, purely geometrical approaches, and neural networks, that can calculate structures and one or more additional molecular properties. [Pg.2]

An extension of this approach led to the study of some simple molecules in which trivalent phosphorus is bonded to carbon by a double or a triple bond. These spectroscopic experiments have not only yielded conclusive identification but a wealth of molecular information such as geometric and electronic structural data. More importantly, the >C=P- and -CSp moieties could be considered as viable functional groups with interesting and well defined chemical properties. [Pg.383]

The geometrical structures of several common conjugated polymers are shown in Fig. 4.1, where the necessary (but not sufficient) condition for conjugation, the alternation of the single and double bonds along the polymer backbone, can be seen. The unique electronic properties of conjugated polymers derive from the presence of -electrons, the wavefunctions of which are delocalized over long portions of (if not the entire) polymer chain, when the molecular structure of the... [Pg.51]


See other pages where Geometric properties molecular structures is mentioned: [Pg.450]    [Pg.469]    [Pg.10]    [Pg.392]    [Pg.138]    [Pg.247]    [Pg.110]    [Pg.333]    [Pg.130]    [Pg.2]    [Pg.3]    [Pg.5]    [Pg.105]    [Pg.13]    [Pg.264]    [Pg.220]    [Pg.205]    [Pg.358]    [Pg.236]    [Pg.16]    [Pg.127]    [Pg.102]    [Pg.233]    [Pg.247]    [Pg.721]    [Pg.191]    [Pg.42]    [Pg.122]    [Pg.355]    [Pg.5]    [Pg.280]   
See also in sourсe #XX -- [ Pg.643 , Pg.644 ]




SEARCH



Geometric properties

Geometric structure

Geometric structuring

Geometrical structure

© 2024 chempedia.info