Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein synthesis genetic code

Protein synthesis (PS) Paul Zamecnic, Mahlon Hoagland (ribosomes, amino acyl-tRNA) Gobind Khorana, Robert Holley Marshall Nirenberg (genetic code protein synthesis, Nobel Prize, 1968, medicine) 9.2... [Pg.352]

Robert Holley (USA) Marshall Nirenberg (USA) (Nobel Prize, Medicine, 1968, genetic code protein synthesis) Sidney Altman Thomas Cech (USA, Nobel Prize, Chemistry, 1989, catalytic RNA)... [Pg.358]

A potentially general method of identifying a probe is, first, to purify a protein of interest by chromatography (qv) or electrophoresis. Then a partial amino acid sequence of the protein is deterrnined chemically (see Amino acids). The amino acid sequence is used to predict likely short DNA sequences which direct the synthesis of the protein sequence. Because the genetic code uses redundant codons to direct the synthesis of some amino acids, the predicted probe is unlikely to be unique. The least redundant sequence of 25—30 nucleotides is synthesized chemically as a mixture. The mixed probe is used to screen the Hbrary and the identified clones further screened, either with another probe reverse-translated from the known amino acid sequence or by directly sequencing the clones. Whereas not all recombinant clones encode the protein of interest, reiterative screening allows identification of the correct DNA recombinant. [Pg.231]

Messenger RNA (mRNA) serves to carry the information or message that is encoded in genes to the sites of protein synthesis in the cell, where this information is translated into a polypeptide sequence. Because mRNA molecules are transcribed copies of the protein-coding genetic units that comprise most of DNA, mRNA is said to be the DNA-like RNA. ... [Pg.341]

H. Gobind Khorana (medicine) interpretations of the genetic code and its function in protein synthesis... [Pg.6]

The cell must possess the machinery necessary to translate information accurately and efficiently from the nucleotide sequence of an mRNA into the sequence of amino acids of the corresponding specific protein. Clarification of our understanding of this process, which is termed translation, awaited deciphering of the genetic code. It was realized early that mRNA molecules themselves have no affinity for amino acids and, therefore, that the translation of the information in the mRNA nucleotide sequence into the amino acid sequence of a protein requires an intermediate adapter molecule. This adapter molecule must recognize a specific nucleotide sequence on the one hand as well as a specific amino acid on the other. With such an adapter molecule, the cell can direct a specific amino acid into the proper sequential position of a protein during its synthesis as dictated by the nucleotide sequence of the specific mRNA. In fact, the functional groups of the amino acids do not themselves actually come into contact with the mRNA template. [Pg.358]

Twenty different amino acids are required for the synthesis of the cellular complement of proteins thus, there must be at least 20 distinct codons that make up the genetic code. Since there are only four different nucleotides in mRNA, each codon must consist of more than a single purine or pyrimidine nucleotide. Codons consisting of two nucleotides each could provide for only 16 (4 ) specific codons, whereas codons of three nucleotides could provide 64 4 ) specific codons. [Pg.358]

Despite the differences in nuclear structures between prokaryotes and eukaryotes, the genetic code, i.e. the combination of bases which does for a particular amino acid in the process of protein synthesis, is the same as it is in all living organisms. [Pg.10]

Genetic code Sequence of nucleotides along the DNA and coded in triplets (codons) along the mRNA that determines the sequence of amino acids in protein synthesis. The DNA sequence of a gene can be used to predict the mRNA sequence, and subsequently to predict the amino acid sequence. [Pg.534]

Transfer RNA (tRNA) RNA with a triplet nucleotide sequence that is complementary to the triplet nucleotide coding sequences of mRNA. tRNAs in protein synthesis bond with amino acids and transfer them to the ribosomes, where proteins are assembled according to the genetic code carried by mRNA... [Pg.538]

Figure 10 Alteration of the genetic code for incorporation of non-natural amino acids, (a) In nonsense suppression, the stop codon UAG is decoded by a non-natural tRNA with the anticodon CUA. In vivo decoding of the UAG codon by this tRNA is in competition with termination of protein synthesis by release factor 1 (RFl). Purified in vitro translation systems allow omission of RF1 from the reaction mixture, (b) A new codon-anticodon pair can be created using four-base codons such as GGGU. Crystal structures of these codon-anticodon complexes in the ribosomal decoding center revealed that the C in the third anticodon position interacts with both the third and fourth codon position (purple line) while the extra A in the anticodon loop does not contact the codon.(c) Non-natural base pairs also allow creation of new codon-anticodon pairs. Shown here is the interaction of the base Y with either base X or (hydrogen bonds are indicated by red dashes). Figure 10 Alteration of the genetic code for incorporation of non-natural amino acids, (a) In nonsense suppression, the stop codon UAG is decoded by a non-natural tRNA with the anticodon CUA. In vivo decoding of the UAG codon by this tRNA is in competition with termination of protein synthesis by release factor 1 (RFl). Purified in vitro translation systems allow omission of RF1 from the reaction mixture, (b) A new codon-anticodon pair can be created using four-base codons such as GGGU. Crystal structures of these codon-anticodon complexes in the ribosomal decoding center revealed that the C in the third anticodon position interacts with both the third and fourth codon position (purple line) while the extra A in the anticodon loop does not contact the codon.(c) Non-natural base pairs also allow creation of new codon-anticodon pairs. Shown here is the interaction of the base Y with either base X or (hydrogen bonds are indicated by red dashes).

See other pages where Protein synthesis genetic code is mentioned: [Pg.78]    [Pg.69]    [Pg.12]    [Pg.69]    [Pg.423]    [Pg.188]    [Pg.525]    [Pg.242]    [Pg.21]    [Pg.206]    [Pg.336]    [Pg.395]    [Pg.303]    [Pg.358]    [Pg.358]    [Pg.359]    [Pg.361]    [Pg.363]    [Pg.365]    [Pg.367]    [Pg.369]    [Pg.371]    [Pg.373]    [Pg.377]    [Pg.234]    [Pg.324]    [Pg.4]    [Pg.112]    [Pg.38]    [Pg.46]    [Pg.47]    [Pg.359]    [Pg.95]    [Pg.2]    [Pg.353]    [Pg.384]    [Pg.43]    [Pg.55]   


SEARCH



CODE Genetics

Genetic code

Genetics genetic code

Protein synthesis genetic code expanded

© 2024 chempedia.info