Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Generation methods intermolecular cycloadditions

It has long been recognized that nitrone cycloadditions may allow access to spirocyclic ring systems. Such systems are inherently difficult to synthesize by conventional methods, yet are a structural component of a number of biologically active natural materials. Two common strategies have emerged for spirocycle generation from exocyclic or endocyclic nitrones (Scheme 1.45). In the exocyclic version, the carbon atom (arrowed) of the nitrone C=N double bond of dipole 209 carries a cyclic substitutent and thus an intermolecular cycloaddition reaction will... [Pg.37]

Intramolecular azomethine ylide cycloaddition to the C—O double bond of an aldehyde was reported in 197369 and cycloaddition to the C—C double bond was first reported in 1975.70 Competition between 1,1- and 1,3-cycloaddition is observed in intramolecular reactions, although intermolecular reactions give only 1,3-cycloaddition. Photolysis of 2//-azirines is one generation method of nitrile ylides applicable to intramolecular cycloaddition.70 Another method involves the base-catalyzed 1,3-elimination of hydrogen halide from alkenyl imidoyl halides. Still other procedures involve thermolytic and photolytic cycloreversions of oxazolinones and dihydrooxazaphospholes. [Pg.1141]

The most effective and well studied method is a tandem methodology including Rh(II)-catalyzed diazo ketone cyclization onto a neighboring carbonyl group to generate a carbonyl ylide with subsequent intermolecular cycloaddition to a multiple bond. Depending on the length of the chain... [Pg.204]

A review of the methods for the generation of cyclic carbonyl ylides from intramolecular carbene additions has recently appeared [64]. This intermediate was first exploited as the An component for cycloaddition reactions by Ibata [65]. ort/io-Disubstituted carboalkoxy aryl diazoketones such as 54 were decomposed by copper complexes, generating six-membered ring carbonyl ylides. These transient intermediates underwent subsequent intermolecular cycloadditions in the presence of ethylenic and acetylenic reagents to give predominantly exo products containing the oxabicyclo[3.2.1] nucleus, Eq. 38. [Pg.18]

Hoffmann also made pioneering contributions to the field of [4+3] cycloadditions. These contributions include the development of processes for both intra- and intermolecular cycloadditions and of a variety of methods for generating allyl cations (Eq. 39). ... [Pg.18]

Given their extraordinary reactivity, one might assume that o-QMs offer plentiful applications as electrophiles in synthetic chemistry. However, unlike their more stable /tora-quinone methide (p-QM) cousin, the potential of o-QMs remains largely untapped. The reason resides with the propensity of these species to participate in undesired addition of the closest available nucleophile, which can be solvent or the o-QM itself. Methods for o-QM generation have therefore required a combination of low concentrations and high temperatures to mitigate and reverse undesired pathways and enable the redistribution into thermodynamically preferred and desired products. Hence, the principal uses for o-QMs have been as electrophilic heterodienes either in intramolecular cycloaddition reactions with nucleophilic alkenes under thermodynamic control or in intermolecular reactions under thermodynamic control where a large excess of a reactive nucleophile thwarts unwanted side reactions by its sheer vast presence. [Pg.90]

Although cycloaddition reactions have yet to be observed for alkene radical cations generated by the fragmentation method, there is a very substantial literature covering this aspect of alkene radical cation chemistry when obtained by one-electron oxidation of alkenes [2-16,18-26,28-31]. Rate constants have been measured for cycloadditions of alkene and diene radical cations, generated oxidatively, in both the intra- and intermolecular modes and some examples are given in Table 4 [91,92]. [Pg.24]

Note that Pearson has extended the classical anionic [3 + 2] cycloadditions to allow the generation of nonstabilized 2-azaallyl anions, and has successfully applied this methodology to the held of alkaloid total synthesis. A key discovery was that (2-azaallyl)stannanes are capable of undergoing tin-lithium exchange to generate the nonstabilized anions (63-76), which can be trapped either intramole-cularly or intermolecularly with unactivated alkenes to produce pyrrolidines, often in a stereoselective fashion. Thus, a variety of 2-azaallyl anions are accessible by his method. A few examples of Pearson s contributions are illustrated in Scheme 11.3 (70,76). [Pg.759]

The dimerization of thioformylketene was investigated by B3LYP and G3MP2B3 methods. The 4 + 4-pathway has the lowest energy barrier and calculations suggest that the reaction is pseudopericyclic.231 The stereospecific intramolecular 4 + 4-cycloaddition reaction between cyclohexadiene iron tricarbonyl complex and appended dienes (198) generates cyclooctadiene tricyclic adducts (199) (Scheme 56).232 The first example of an asymmetric intermolecular 4 + 4-photocycloaddition reaction in solution between 9-cyanoanthracene and chiral 2-methoxy-l-naphthamides has been reported. The frozen chirality is effectively transferred to the optically active product.233... [Pg.391]

A non-biomimetic synthesis of /J-(-)-horsfiline (57) has also been recently reported which was based on a thermal intermolecular 1,3-dipolar cycloaddition reaction as outlined in Scheme 7 [63J. The reaction of the optically active menthyl ester 67 acting as a dipolarophile, with the JV-methylazomethine ylide 68 (thermally generated in situ from sarcosine and formaldehyde) proceeded with n-facial diastereoselectivity to produce a chromatographically separable mixture of 69 and the unwanted diastereomer. Subsequent cleavage of the chiral auxiliary, followed by removal of the carboxylic acid group by the Barton radical method provided J7-(-)-horsfiline. [Pg.335]

The various methods of generating o-quinone methides,4-5 including the thermal or (Lewis) acid-catalyzed elimination of a phenol Mannich base,149 150-160-161163 the thermal or (Lewis) acid-catalyzed dehydration of an o-hydroxybenzyl alcohol (ether),147-149-151-153-156-157-162-163-165-168 171-175-178-183 the thermal 1,5-hydride shift of an o-hydroxy styrene,171-173 175 178-183 the thermal dissociation of the corresponding spirochromane dimer,158 163-164,166 oxidation of substituted o-alkylphenols,152-170 and the thermal or photochemical-promoted cheletropic extrusion154-155 159 of carbon monoxide, carbon dioxide, or sulfur dioxide (Scheme 7-III), as well as their subsequent in situ participation in regiospecific, intermolecular [4 + 2] cycloadditions with simple olefins and acetylenes,147 149-151 152 153159 162-164... [Pg.282]

Cycloaddition of allyl cations to conjugated dienes provides a route to seven-membered carbocycles. One of several methods can be used to generate the allyl cation, such as from an allyl halide and silver trifluoroacetate, or from an allyl alcohol by way of its trifluoroacetate or sulfonate. Cycloaddition of the allyl cation proceeds best with a cyclic diene, particularly for intermolecular reactions. Thus, cyclohexadiene and methylallyl cation gave the bicyclo[3.2.2]nonadiene 187 (3.125). Many intramolecular examples are known, such as the formation of the... [Pg.220]

The intermolecular [4+3] cycloaddition is a particularly powerful and versatile method not only for the generation of the seven-membered carbocycles but also for a variety of other cyclic and acyclic natural products. The strategies utilizing the intermolecular [4+3] cycloaddition reaction are discussed in this section. [Pg.600]


See other pages where Generation methods intermolecular cycloadditions is mentioned: [Pg.108]    [Pg.1134]    [Pg.263]    [Pg.55]    [Pg.263]    [Pg.75]    [Pg.201]    [Pg.210]    [Pg.292]    [Pg.31]    [Pg.1864]    [Pg.59]    [Pg.292]    [Pg.234]    [Pg.336]   
See also in sourсe #XX -- [ Pg.416 , Pg.437 ]




SEARCH



Generation methods

Generation methods cycloaddition

© 2024 chempedia.info