Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Galvanic cells with transference

A rapid experimental method to determine transfer activity coefficients uses galvanic cells with transference but negligible liquid-junction potentials e.g. the cell... [Pg.56]

Galvanic cells that include at least one electrolyte-electrolyte interface (which may be an interface with a membrane) across which ions can be transported by diffusion are called cells with transference. For the electrolyte-electrolyte interfaces considered in earlier sections, cells with transference can be formulated, for example, as... [Pg.77]

Electrochemical Cell Without Transference Assume that we want to determine the activities of HCl solutions of various concentrations. We assemble a galvanic cell with hydrogen and calomel electrode ... [Pg.112]

Concentration cells are a useful example demonstrating the difference between galvanic cells with and without transfer. These cells consist of chemically identical electrodes, each in a solution with a different activity of potential-determining ions, and are discussed on page 171. [Pg.178]

In the previous chapters the condition of electroneutrality was applied to all systems that contained charged species. In this chapter we study the results when this condition is relaxed. This leads to studies of electrochemical systems, especially those involving galvanic cells. Cells without transference are emphasized, although simple cells with transference are discussed. At the end of the chapter the conditions of equilibrium across membranes in electrochemical systems are outlined. [Pg.330]

C19-0128. A galvanic cell is constructed using a silver wire coated with silver chloride and a nickel wire immersed in a beaker containing 1.50 X 10 M NiCl2 (a) Determine the balanced cell reaction, (b) Calculate the potential of the cell, (c) Draw a sketch showing the electron transfer reaction occurring at each electrode. [Pg.1426]

Semiconductor electrodes can be used in galvanic cells like metal electrodes and a controlled electrode potential can be applied by means of a potentiostat, if the electrode can be contacted with a suitable metal without formation of a barrier layer (ohmic contact). Suitable techniques for ohmic contacts have been worked out in connection with semiconductor electronics. Surface treatment is important for the properties of semiconductor electrodes in all kind of charge transfer processes and especially in the photoresponse. Mechanical polishing generates a great number of new electronic states underneath the surface 29> which can act as quenchers for excited molecules at the interface. Therefore, sufficient etching is imperative for studying photocurrents caused by excited dyes. [Pg.46]

A solid state galvanic cell consists of electrodes and the electrolyte. Solid electrolytes are available for many different mobile ions (see Section 15.3). Their ionic conductivities compare with those of liquid electrolytes (see Fig. 15-8). Under load, galvanic cells transport a known amount of component from one electrode to the other. Therefore, we can predetermine the kinetic boundary condition for transport into a solid (i.e., the electrode). By using a reference electrode we can simultaneously determine the component activity. The combination of component transfer and potential determination is called coulometric titration. It is a most useful method for the thermodynamic and kinetic investigation of compounds with narrow homogeneity ranges. For example, it has been possible to measure in a... [Pg.399]

The combination of chemistry and electricity is best known in the form of electrochemistry, in which chemical reactions take place in a solution in contact with electrodes that together constitute an electrical circuit. Electrochemistry involves the transfer of electrons between an electrode and the electrolyte or species in solution. It has been in use for the storage of electrical energy (in a galvanic cell or battery), the generation of electrical energy (in fuel cells), the analysis of species in solution (in pH glass electrodes or in ion-selective electrodes), or the synthesis of species from solution (in electrolysis cells). [Pg.38]

Although the law of mass action is equally valid for oxidation-reduction processes, and therefore conclusions as to the direction of reactions may be drawn from the knowledge of equilibrium constants, traditionally a different approach is used for such processes. This has both historical and practical reasons. As pointed out in the previous sections, in oxidation-reduction processes electrons are transferred from one species to another. This transfer may occur directly, i.e. one ion collides with another and during this the electron is passed on from one ion to the other. It is possible, however, to pass these electrons through electrodes and leads from one ion to the other. A suitable device in which this can be achieved is a galvanic cell, one of which is shown in Fig. 1.14. A galvanic cell consists of two half-cells, each made up of an electrode and an electrolyte. The two electrolytes are connected with a salt bridge and, if... [Pg.113]


See other pages where Galvanic cells with transference is mentioned: [Pg.77]    [Pg.540]    [Pg.77]    [Pg.540]    [Pg.229]    [Pg.276]    [Pg.171]    [Pg.300]    [Pg.273]    [Pg.697]    [Pg.320]    [Pg.265]    [Pg.259]    [Pg.285]    [Pg.272]    [Pg.18]    [Pg.223]    [Pg.254]    [Pg.372]    [Pg.400]    [Pg.771]    [Pg.155]    [Pg.305]    [Pg.261]    [Pg.262]    [Pg.116]    [Pg.143]    [Pg.144]    [Pg.42]    [Pg.202]    [Pg.289]    [Pg.671]    [Pg.69]    [Pg.92]    [Pg.121]    [Pg.2734]    [Pg.2741]    [Pg.277]    [Pg.858]    [Pg.285]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Cell galvanics

Cells with transference

Transference cells

Transference galvanics

© 2024 chempedia.info