Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Further Comments on Some Characterization Techniques

An example of a relevant optical property is the birefringence of a deformed polymer network [246]. This strain-induced birefringence can be used to characterize segmental orientation, both Gaussian and non-Gaussian elasticity, and to obtain new insights into the network chain orientation (see Chapter 8) necessary for strain-induced crystallization [4,16,85,247,248]. [Pg.374]

IR dichroism has also been particularly helpful in this regard. Of predominant interest is the orientation factor S=( 1/2)(3 cos2jS —1) (see Chapter 8), which can be obtained experimentally from the ratio of absorbances of a chosen peak parallel and perpendicular to the direction in which an elastomer is stretched [5,249]. One representation of such results is the effect of network chain length on the reduced orientation factor [S]=S/(72—2 1), where X is the elongation. A comparison is made among typical theoretical results in which the affine model assumes the chain dimensions to change linearly with the imposed macroscopic strain, and the phantom model allows for junction fluctuations that make the relationship nonlinear. The experimental results were found to be close to the phantom relationship. Combined techniques, such as Fourier-transform infrared (FTIR) spectroscopy combined with rheometry (see Chapter 8), are also of increasing interest [250]. [Pg.374]

Other optical and spectroscopic techniques are also important, particularly with regard to segmental orientation. Some examples are fluorescence polarization, deuterium nuclear magnetic resonance (NMR), and polarized IR spectroscopy [4,246,251]. Also relevant here is some work indicating that microwave techniques can be used to image elastomeric materials, for example, with regard to internal damage [252,253]. [Pg.374]

on the other hand, does not require a conducting surface. The probe simply responds to attractions and repulsions from the surface, and its corresponding downward and upward motions are directly recorded to give [Pg.374]

Solid-state NMR methods have been much used to study the characteristics of the network chains themselves, particularly with regard to orientations [265], molecular motions [266], and their effects on the diffusion of small molecules [267], Aspects related to the structures of the networks include the degree of cross-linking [268,269], the distributions of cross-links [270] and stresses [271], and topologies [272,273]. Another example is the use of NMR to clarify some issues in the areas of aging and phase separation [274], [Pg.375]


See other pages where Further Comments on Some Characterization Techniques is mentioned: [Pg.338]    [Pg.374]   


SEARCH



Characterization techniques

Comment

Some characterization techniques

© 2024 chempedia.info