Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Furoxans cycloadditions

Furoxan nitrolic acid 34 was converted into isoxazoline 36 (96% yield) on storage in CH2CI2 solution in the presence of water (93CHE1099, 93KGS1283) (Scheme 12). The intermediate 35 could be trapped as [3 + 2] cycloaddition product 37. Reaction of nitrolic acid 34 with an excess of N2O4 also occurred via 35, giving 3-cyano-4-nitrofuroxan 38. [Pg.72]

Azidofurazans and -furoxans undergo dipolar cycloaddition reactions with unsaturated compounds, in some cases regiospecifically. Thus, reaction of 3-amino-4-azidofurazan with l-morpholinyl-2-nitroethene (toluene, reflux, 70 hours) gives 4-nitro-l,2,3-triazole 204 in 87% yield (99MI1, 000KGS406). Cycloaddition of the same azide to alkynes was accomplished by formation of a mixture of position isomers 205 and 206. Regiospecific addition was observed only in singular cases... [Pg.130]

Nitrile oxides are very reactive dipoles which, apart a few members, need to be prepared in situ for their tendency to dimerize to furoxans [86], This behaviour represents a limit to their use with alkylidenecyelopropanes that is only in part compensated by their reactivity. The cycloadditions of several nitrile oxides with alkylidenecyelopropanes were extensively studied in connection with the rearrangement process leading to dihydropyrid-4-ones 336 [64, 87],... [Pg.58]

Aroylnitrile oxides can also be generated from diaroyl furoxans 183 under micro-wave irradiation [33]. Formation of the nitrile oxide intermediate 184 and its cycloaddition with dipolarophiles proceeds at atmospheric pressure within minutes in the absence of solvent and in good yields (Scheme 9.56). The reaction occurs by the rear-... [Pg.327]

These routes are dimerization to furoxans 2 proceeding at ambient and lower temperatures for all nitrile oxides excluding those, in which the fulmido group is sterically shielded, isomerization to isocyanates 3, which proceeds at elevated temperature, is practically the only reaction of sterically stabilized nitrile oxides. Dimerizations to 1,2,4-oxadiazole 4-oxides 4 in the presence of trimethylamine (4) or BF3 (1 BF3 = 2 1) (24) and to 1,4,2,5-dioxadiazines 5 in excess BF3 (1, 24) or in the presence of pyridine (4) are of lesser importance. Strong reactivity of nitrile oxides is based mainly on their ability to add nucleophiles and particularly enter 1,3-dipolar cycloaddition reactions with various dipolarophiles (see Sections 1.3 and 1.4). [Pg.3]

Stable furoxans are convenient starting compounds for generating short-lived nitrile oxides XCNO (X = ONC, NC, Cl, Br, and Me) by thermolysis (10, 11, 80, 81). The thermolysis of benzotrifuroxan (200°, in excess PhCN) proceeds (Scheme 1.6) with the cleavage of the C-C and 0-N(0) bonds in only one furoxan ring to give bifuroxan bis(nitrile oxide). The latter undergoes further reactions such as cycloaddition with PhCN or conversion to bisisocyanate (82). [Pg.7]

Some routes of chemical transformations of nitrile oxides connected with the problem of their stability were briefly discussed in Section 1.2. Here only two types of such reactions, proceeding in the absence of other reagents, viz., dimerization to furoxans and isomerization to isocyanates, will be considered. All other reactions of nitrile oxides demand a second reagent (in some cases the component is present in the same molecule, and the reaction takes place intramolecularly) namely, deoxygenation, addition of nucleophiles, and 1,3-dipolar cycloaddition reactions. Also, some other reactions are presented, which differ from those mentioned above. [Pg.12]

DFT studies of the intramolecular ene-like (or the so-called 1,3-dipolar ene) reaction between nitrile oxides and alkenes show that this reaction is a three-step process involving a stepwise carbenoid addition of nitrile oxide to form a bicyclic nitroso compound, followed by a retro-ene reaction of the nitrosocyclopropane intermediate. The competitive reactions, either the intramolecular [3 + 2] cycloaddition between nitrile oxides and alkenes or the intermolecular dimerization of nitrile oxides to form furoxans, can overwhelm the intramolecular 1,3-dipolar ene reaction if the tether joining the nitrile oxide and alkene is elongated, or if substituents such as trimethylsilyl are absent (425). [Pg.79]

Other Types of Nitronates in [3 + 2]-Cycloaddition Reactions with Olefins As mentioned above, of all known types of nitronates, only alkyl and silyl nitronates can be involved in [3 + 2]-cycloaddition reactions with olefins. However, furoxans (161), which can also be considered as cyclic nitronates, can react with active dipolarophiles under extreme conditions to give nitrosoacetals (162) (Scheme 3.131, Eq. 1). [Pg.551]

The mechanism of this reaction has not been studied in detail. However, it can be represented as a sequence of reactions. The first reaction is, in fact, [3+ 2]-cycloaddition of olefin to furoxan (161). Under severe conditions, the resulting intermediate A undergoes fragmentation to give five-membered cyclic nitronate B. The latter is involved in the usual addition reaction with an excess of olefin to form isolable bicyclic product (162) (301, 378, 379). [Pg.552]

Dipolar cycloadditions of nitrile oxides 216 onto 1 gave much poorer yields of cycloadducts 217 than those of nitrones 205. The cycloadditions of 216 to 1 require higher temperatures and unfavorably compete with their dimerization to furoxanes. However, stable nitrile oxides 216 with bulky substituents R that hamper dimerization, can be used. The thermal rearrangements of 5-spirocyclopropane-annelated isoxazolines 217 always required higher temperatures than the isoxazolidine counterparts. Under these conditions the second cyclopropane ring was also cleaved to give furopyridines 218 (Scheme 48) [136, 137]. [Pg.129]

The first examples of furazan and furoxan nitrile oxides have been reported in the early 1990s. 4-Aminofurazan-3-carbonitrile oxide (65) was generated from the hydroximoyl chloride with base and its cycloaddition reactions investigated <92KGS687>, and the 4-phenyl analogue (66) is formed via the nitrolic acid derivative by treatment of the aldoxime with dinitrogen tetroxide <93LA44i>. Furazan-3-amidoximes react in the usual way with nitriles to yield 3-(furazan-3-yl)-1,2,4-oxadiazoles <9013941 >. [Pg.248]

Furoxans are not formed by direct oxidation of furazans, but they can readily be prepared by ring closure or cycloaddition pathways. The most synthetically useful routes are the oxidative cyclization of 1,2-dioximes, the dehydration of a-nitroketoximes and, for symmetrically substituted furoxans, dimerization of nitrile oxides. For asymmetrically substituted analogues care must be taken in selecting the route in order to avoid formation of mixtures of 2- and 5-oxide isomers. [Pg.258]

Interestingly, furoxanes (274) have also been shown to be competent dipoles for the [3 + 2] cycloaddition. These compounds result from a dimerization of the corresponding nitrile oxide (Eq. 2.26) (237-241). Under elevated temperatures, the addition of a dipolarophile results in the cycloadduct 275. This intermediate is unstable under the reaction conditions and undergoes a retro-[3 + 2] cycloaddition to reveal a nitronate. In the presence of excess dipolarophile, the reaction proceeds to provide bicyclic isoxazolidines in moderate yield. [Pg.145]

A special case involves the thermal decomposition of 3,4-dinitrofuroxan (104). The cycloreversion is already observed at room temperature and the nitroformo-nitrile oxide could be trapped with electron-deficient nitriles. The cycloadditions with styrene, phenylacetylene, frani-stilbene, and cyclohexene, however, led to complex mixtures of products that could not be separated (104). In the related case of a furoxan with an a-hydrogen adjacent to the sulfonyl group, the reaction was proposed to proceed according to course (b) (Scheme 6.7). [Pg.372]

TABLE 6.1. CYCLOADDITIONS TO 1-HEXENE USING FUROXANS AS NITRILE OXIDE PRECURSORS"... [Pg.372]

As was mentioned earlier, furoxans are often encountered as unwanted byproducts in nitrile oxide cycloadditions. There are, however, some efforts to exploit this facile C C forming dimerization for synthesis. In one case, an intramolecular hw(nitrile oxide) cycloaddition was used for a synthesis of biotin (322a). More recently, the intramolecular dimerization was employed for the construction of medium- and large-size rings. This was feasible if one of the two nitrile oxide functionahties was relatively hindered and stable (see Section 6.1.4). Unsymmetrical... [Pg.438]

Control of reaction selectivities with external reagents has been quite difficult. Unsolved problems remaining in the held of nitrile oxide cycloadditions are (a) Nitrile oxide cycloadditions to 1,2-disubstituted alkenes are sluggish, the dipoles undergoing facile dimerization to furoxans in most cases (b) the reactions of nitrile oxides with 1,2-disubstituted alkenes nonregioselective (c) stereo- and regiocontrol of this reaction by use of external reagents are not yet well developed and (d) there are few examples of catalysis by Lewis acids known, as is true for catalyzed enantioselective reactions. [Pg.779]

Heating furoxans with alkenes may also yield 2-isoxazolines as a result of initial fragmentation to nitrile oxides and subsequent 1,3-dipolar cycloaddition (see Section 4.22.3.2.2) ... [Pg.408]

Nitrile oxides display three types of reactivity (apart from isomerization and deoxygenation) 1,3-cycloaddition, 1,3-addition, and dimerization to furoxans. The first can give isoxazolines and isoxazoles directly. The second can give isoxazolines and isoxazoles indirectly. The third (which may be regarded as a carbenoid reaction,62 but see also Lo Vecchio et al.63) is an undesirable side reaction as far as the synthesis of isoxazoles is concerned. Thus, although many methods for generating nitrile oxides are available, and in some cases they may be isolated and used, methods capable of generating them in the presence of the substrate are preferred. [Pg.158]


See other pages where Furoxans cycloadditions is mentioned: [Pg.321]    [Pg.316]    [Pg.209]    [Pg.237]    [Pg.241]    [Pg.241]    [Pg.259]    [Pg.362]    [Pg.371]    [Pg.437]    [Pg.461]    [Pg.286]    [Pg.295]    [Pg.385]    [Pg.1078]    [Pg.835]    [Pg.404]    [Pg.412]   
See also in sourсe #XX -- [ Pg.29 , Pg.298 ]




SEARCH



1,3-dipolar cycloaddition reactions furoxans

Furoxan

Furoxans intramolecular nitrile oxide cycloadditions

Furoxans via 1,3-dipolar cycloadditions

Nitrile oxides, cycloaddition with furoxans

© 2024 chempedia.info