Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Frontier orbitals 1,3-dipolar cycloaddition

Frontier molecular orbital theory correctly rationalizes the regioselectivity of most 1,3-dipolar cycloadditions (73JA7287). When nitrile ylides are used as 1,3-dipoles, the dipole... [Pg.55]

When both the 1,3-dipoIe and the dipolarophile are unsymmetrical, there are two possible orientations for addition. Both steric and electronic factors play a role in determining the regioselectivity of the addition. The most generally satisfactory interpretation of the regiochemistry of dipolar cycloadditions is based on frontier orbital concepts. As with the Diels-Alder reaction, the most favorable orientation is that which involves complementary interaction between the frontier orbitals of the 1,3-dipole and the dipolarophile. Although most dipolar cycloadditions are of the type in which the LUMO of the dipolarophile interacts with the HOMO of the 1,3-dipole, there are a significant number of systems in which the relationship is reversed. There are also some in which the two possible HOMO-LUMO interactions are of comparable magnitude. [Pg.647]

This chapter will try to cover some developments in the theoretical understanding of metal-catalyzed cycloaddition reactions. The reactions to be discussed below are related to the other chapters in this book in an attempt to obtain a coherent picture of the metal-catalyzed reactions discussed. The intention with this chapter is not to go into details of the theoretical methods used for the calculations - the reader must go to the original literature to obtain this information. The examples chosen are related to the different chapters, i.e. this chapter will cover carbo-Diels-Alder, hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions. Each section will start with a description of the reactions considered, based on the frontier molecular orbital approach, in an attempt for the reader to understand the basis molecular orbital concepts for the reaction. [Pg.301]

Frontier-orbital Interactions for 1,3-Dipolar Cycloaddition Reactions of Nitrones... [Pg.321]

Mechanistically the 1,3-dipolar cycloaddition reaction very likely is a concerted one-step process via a cyclic transition state. The transition state is less symmetric and more polar as for a Diels-Alder reaction however the symmetry of the frontier orbitals is similar. In order to describe the bonding of the 1,3-dipolar compound, e.g. diazomethane 4, several Lewis structures can be drawn that are resonance structures ... [Pg.74]

An interpretation based on frontier molecular orbital theory of the regiochemistry of Diels Alder and 1,3-dipolar cycloaddition reactions of the triazepine 3 is available.343 2,4,6-Trimethyl-benzonitrile oxide, for example, yields initially the adduct 6.344... [Pg.458]

We now turn to the gas-phase 1,3-dipolar cycloaddition of fulminic acid to ethyne. The concerted, almost synchronous nature of this reaction might create the impression that the electronic mechanism of this process should be very similar to that of the Diels-Alder reaction. Such an expectation is reinforced by frontier orbital theory, which treats both reactions in very much the same way (see Ref. 32). The only significant differences are related to the fact that the lowest unoccupied MO (LUMO) for a linear 1,3-dipole... [Pg.334]

The SC descriptions of the electronic mechanisms of the three six-electron pericyclic gas-phase reactions discussed in this paper (namely, the Diels-Alder reaction between butadiene and ethene [11], the 1,3-dipolar cycloaddition offulminic acid to ethyne [12], and the disrotatory electrocyclic ring-opening of cyclohexadiene) take the theory much beyond the HMO and RHF levels employed in the formulation of the most popular MO-based treatments of pericyclic reactions, including the Woodward-Hoffmarm mles [1,2], Fukui s frontier orbital theory [3] and the Dewar-Zimmerman model [4—6]. The SC wavefunction maintains near-CASSCF quality throughout the range of reaction coordinate studied for each reaction but, in contrast to its CASSCF counterpart, it is very much easier to interpret and to visualize directly. [Pg.342]

The 1,3-dipolar cycloaddition of organic azides with nitriles could give rise to two regioisomers. Since organic azides are Type II 1,3-dipoles on the Sustmann classification (approximately equal HOMO-LUMO gaps between the interacting frontier orbital pairs) the reactions could be dipole HOMO or LUMO controled and the regioselectivity should be determined by the orbital coefficients for the dominant HOMO-LUMO interaction. Such systems show U-shaped kinetic curves in their... [Pg.668]

The relative frontier molecular orbital (FMO) energies of the reagents are very important for the catalytic control of 1,3-dipolar cycloadditions. In order to control the stereochemical outcome of a reaction with a substoichiometric amount of a ligand-metal catalyst, it is desirable that a large rate acceleration is obtained in order to assure that the reaction only takes place in the sphere of the metal and the chiral ligand. The FMO considerations will be outlined in the following using nitrones as an example. [Pg.864]

The reactivity and regioselectivity of 1,3-dipolar cycloadditions have been discussed in terms of the frontier orbitals [271]. Most of the features may be understood on the basis of simple Hfickel MO theory. The HOMO and LUMO n orbitals and n orbital energies for all 18 combinations of the parent dipoles are shown in Figure 12.8. The frontier orbitals of many of the 1,3-dipoles have previously been derived by CNDO/2 and extended Hfickel theory [272]. The first six structures, all of 16-electron type, are shown in greater detail ... [Pg.172]

The structural requirements of the mesomeric betaines described in Section III endow these molecules with reactive -electron systems whose orbital symmetries are suitable for participation in a variety of pericyclic reactions. In particular, many betaines undergo 1,3-dipolar cycloaddition reactions giving stable adducts. Since these reactions are moderately exothermic, the transition state can be expected to occur early in the reaction and the magnitude of the frontier orbital interactions, as 1,3-dipole and 1,3-dipolarophile approach, can be expected to influence the energy of the transition state—and therefore the reaction rate and the structure of the product. This is the essence of frontier molecular orbital (EMO) theory, several accounts of which have been published. 16.317 application of the FMO method to the pericyclic reactions of mesomeric betaines has met with considerable success. The following section describes how the reactivity, electroselectivity, and regioselectivity of these molecules have been rationalized. [Pg.89]

The kinetic aspects of these reactions were inspected by the frontier molecular orbital (FMO) method for the 1,3-dipolar cycloaddition reactions of R Ns + R2NCO or R2N3 + R NCO affording the corresponding tetra-zolinone (97JHC113). Making use of the Klopman-Salem equation, from... [Pg.386]

A secondary orbital interaction has been used to explain other puzzling features of selectivity, but, like frontier orbital theory itself, it has not stood the test of higher levels of theoretical investigation. Although still much cited, it does not appear to be the whole story, yet it remains the only simple explanation. It works for several other cycloadditions too, with the cyclopentadiene+tropone reaction favouring the extended transition structure 2.106 because the frontier orbitals have a repulsive interaction (wavy lines) between C-3, C-4, C-5 and C-6 on the tropone and C-2 and C-3 on the diene in the compressed transition structure 3.55. Similarly, the allyl anion+alkene interaction 3.56 is a model for a 1,3-dipolar cycloaddition, which has no secondary orbital interaction between the HOMO of the anion, with a node on C-2, and the LUMO of the dipolarophile, and only has a favourable interaction between the LUMO of the anion and the HOMO of the dipolarophile 3.57, which might explain the low level or absence of endo selectivity that dipolar cycloadditions show. [Pg.48]

From the foregoing survey of heterocyclic hydrazonoyl halides, it appears that the main emphasis has been restricted to both their preparation and use as intermediates for further synthesis. Large areas of their chemistry, particularly regarding their physical and biological properties, remain to be developed. A deeper understanding of some aspects of their 1,3-dipolar cycloaddition reactions, such as regiochemistry and site selectivity in terms of the frontier molecular orbital method, is also needed. [Pg.334]

The molecular geometries and the frontier orbital energies of heterophospholes 28-31 were obtained from density functional theory (DFT) calculations at the B3LYP/6-311- -G, level. The 1,3-dipolar cycloaddition reactivity of these heterophospholes in reactions with diazo compounds was evaluated from frontier molecular orbital (FMO) theory. Among the different types of heterophospholes considered, the 2-acyl-l,2,3-diazaphosphole 28, 377-1,2,3,4-triazaphosphole 30, and 1,3,4-thiazaphosphole 31 were predicted to have the highest dipolarophilic reactivities. These conclusions are in qualitative agreement with available experimental results <2003JP0504>. [Pg.585]

Frontier Orbital Interactions in the Transition States of One-Step 1,3-Dipolar Cycloadditions Sustmann Classification... [Pg.675]

Do the transition states of the 1,3-dipolar cycloadditions with diazomethane benefit from a stabilizing frontier orbital interaction Yes Computations show that the HOMOdia zomethm/LUMOethene interaction (orbital energy difference, -229 kcal/mol) stabilizes the transition state of the 1,3-dipolar cycloaddition to ethene (Figure 15.37) by about 11 kcal/mol. Moreover, computations also show that the HOMOethene/LUMOdjazomethane interaction (orbital energy difference, -273 kcal/mol ) contributes a further stabilization of 7 kcal/mol. [Pg.675]

Fig. 15.37. Frontier orbital interactions in the transition state of the 1,3-dipolar cycloaddition of diazomethane to ethene. Fig. 15.37. Frontier orbital interactions in the transition state of the 1,3-dipolar cycloaddition of diazomethane to ethene.
Frontier orbital interactions are stabilizing the transition states of all the 1,3-dipolar cycloadditions. It is for this reason that one-step 1,3-dipolar cycloadditions are generally possible and, aside from some exotic exceptions, one does indeed observe one-step reactions. [Pg.676]


See other pages where Frontier orbitals 1,3-dipolar cycloaddition is mentioned: [Pg.647]    [Pg.213]    [Pg.212]    [Pg.35]    [Pg.430]    [Pg.2]    [Pg.256]    [Pg.375]    [Pg.541]    [Pg.542]    [Pg.12]    [Pg.180]    [Pg.299]    [Pg.521]    [Pg.522]    [Pg.1073]    [Pg.1073]    [Pg.1098]    [Pg.1102]    [Pg.53]    [Pg.55]   
See also in sourсe #XX -- [ Pg.647 ]

See also in sourсe #XX -- [ Pg.647 ]




SEARCH



1.3- Dipolar cycloaddition reactions frontier molecular orbital theory

1.3- Dipolar cycloadditions frontier molecular orbital theory

1.3- dipolar cycloaddition reactions dominant frontier orbitals

Frontier

Frontier Orbital Interactions in the Transition States of One-Step 1,3-Dipolar Cycloadditions Sustmann Classification

Frontier orbitals

Orbital, frontier

© 2024 chempedia.info