Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radical polymerizations, phase aspects

Rasmussen and co-workers. Chapter 10, have shown that many free-radical polymerizations can be conducted in two-phase systems using potassium persulfate and either crown ethers or quaternary ammonium salts as initiators. When transferred to the organic phase persulfate performs far more efficiently as an initiator than conventional materials such as azobisisobutyronitrile or benzoyl peroxide. In vinyl polymerizations using PTC-persulfate initiation one can exercise precise control over reaction rates, even at low temperatures. Mechanistic aspects of these complicated systems have been worked out for this highly useful and economical method of initiation of free-radical polymerizations. [Pg.5]

More recently, Kunieda has described ( ) a new aspect of phase transfer free radical polymerization. [Pg.117]

Free radical polymerization kinetics has received much attention and many aspects of the process are well understood (see Chapter 4). Most academic investigations have been carried out in idealized conditions where the extent of monomer conversion is low. The classical expression for the rate of polymerization (Rp), in a single-phase reaction, is Eq. (13), where kp is the propagation rate coefficient, Cm is monomer concentration, J i is the initiation rate and kt is the termination rate coefficient [63]. [Pg.229]

The morphology of the rubber-modified polystyrenes system involves some complex aspects, such as particle size, size distribution, occlusions of polystyrene inside the rubber phase, interfacial bonding between the rubbery particles and the brittle matrix, etc. Many authors have observed that some of the most important factors in controlling the mechanical properties of HIPS and ABS are rubber particle size [49], volume fraction of the rubbery phase (rubber + occluded polystyrene) [50,51] and the degree of graft [52]. Grafting occurs during the polymerization of styrene when some of the free radicals react with the rubber... [Pg.679]

The reaction engineering aspects of these polymerizations are similar. Good heat transfer to a comparatively inviscid phase makes them suitable for vinyl addition polymerizations. Free-radical catalysis is mostly used, but cationic catalysis is used for nonaqueous dispersion polymerization (e.g., of isobutene). High conversions are generally possible, and the resulting polymer, either as a latex or as beads is directly suitable for some applications (e.g., paints, gel permeation chromatography beads, expanded polystyrene). Suspension polymerizations are run in the batch model. Continuous emulsion polymerization is common. [Pg.507]

As explained before, when surfactant, water, and monomer(s) are mixed, the colloidal system obtained consists of monomer-swollen micelles (if the surfactant concentration exceeds its CMC) and monomer droplets dispersed in an aqueous phase that contains dissolved molecules of surfactant and a small amount of the sparingly water-soluble monomer(s). When free radicals are generated in the aqueous phase by action of an initiator system, then the emulsion polymerization takes place. Its evolution is such that the colloidal entities initially present tend to disappear and new colloidal entities (polymer latex particles) are bom by a process called nucleation. For convenience, we first focus on the particle nucleation mechanisms, a very important aspect of emulsion polymerization. [Pg.299]

Other Mechanistic Aspects.—Stannett et al have reported on the kinetics of the emulsion polymerization of styrene initiated by irradiation with cobalt-60 y-rays. The conclusion is reached that Smith-Ewart Case 2 kinetics are obeyed if the reaction system is such that compliance with Smith-Ewart Case 2 would be expected were initiation effected by the thermal decomposition of potassium persulphate. The efficiency of utilization of the radicals produced by radiolysis of the aqueous phase appears to be in the range 0.3—0.5. Chatterjee, Banerjee, and Konar have investigated the molecular weight of polystyrene produced by emulsion polymerization at low monomer concentration, and compared their observations with the predictions of the theories of Harkins, Smith-Ewart, and Gardon. These workers have also investigated the dependence of rate of polymerization upon monomer concentration in the emulsion polymerization of styrene. Arai, Arai, and Saito" have studied the persulphate-initiated surfacant-free emulsion polymerization of methyl methacrylate, and have proposed a model for the reaction. [Pg.36]

To discuss the kinetic aspects of surface-initiated ATRP, the system shoifld be modeled as a confined polymerization, confined in the graft-layer phase. In the system producing free polymers, the polymerization will simultaneously proceed in the solution phase. The unbound reactants such as free polymer radicals, monomer, catalytic species, and other additives will be partitioned between these two phases. The polymerization is usually carried... [Pg.14]


See other pages where Free radical polymerizations, phase aspects is mentioned: [Pg.151]    [Pg.6]    [Pg.6]    [Pg.103]    [Pg.33]    [Pg.469]    [Pg.222]    [Pg.4]    [Pg.580]    [Pg.107]    [Pg.2823]    [Pg.45]   
See also in sourсe #XX -- [ Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 ]




SEARCH



Free radical polymerizations, phase

Polymerization free radical

© 2024 chempedia.info