Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform analyzer

The impedance can be measured using various instruments and techniques, ranging from a simple oscilloscope display to a last Fourier transform analyzer. The most common insfrument used is a frequency response analyzer (FRA), such as a Solartron FRA. The AC impedance or FRA is a four-terminal measurement. Figure 1.33 shows a typical electronic connection for an AC impedance measurement between the Solartron 1260 FRA, TDI loadbank (RBL 488 series 100-60-400), and fuel cell. [Pg.77]

As for the Fourier Transform (FT), the Continuous Wavelet Transform (CWT) is expressed by the mean of an inner product between the signal to analyze s(t) and a set of analyzing function ... [Pg.360]

Woodruff and co-workers introduced the expert system PAIRS [67], a program that is able to analyze IR spectra in the same manner as a spectroscopist would. Chalmers and co-workers [68] used an approach for automated interpretation of Fourier Transform Raman spectra of complex polymers. Andreev and Argirov developed the expert system EXPIRS [69] for the interpretation of IR spectra. EXPIRS provides a hierarchical organization of the characteristic groups that are recognized by peak detection in discrete ames. Penchev et al. [70] recently introduced a computer system that performs searches in spectral libraries and systematic analysis of mixture spectra. It is able to classify IR spectra with the aid of linear discriminant analysis, artificial neural networks, and the method of fe-nearest neighbors. [Pg.530]

In order to analyze the vibrations of a single molecule, many molecular dynamics steps must be performed. The data are then Fourier-transformed into the frequency domain to yield a vibrational spectrum. A given peak can be selected and transformed back to the time domain. This results in computing the vibra-... [Pg.63]

An added consideration is that the TOF instruments are easily and quickly calibrated. As the mass range increases again (m/z 5,000-50,000), magnetic-sector instruments (with added electric sector) and ion cyclotron resonance instruments are very effective, but their prices tend to match the increases in resolving powers. At the top end of these ranges, masses of several million have been analyzed by using Fourier-transform ion cyclotron resonance (FTICR) instruments, but such measurements tend to be isolated rather than targets that can be achieved in everyday use. [Pg.281]

The Fourier analyzer is a digital deviee based on the eonversion of time-domain data to a frequeney domain by the use of the fast Fourier transform. The fast Fourier transform (FFT) analyzers employ a minieomputer to solve a set of simultaneous equations by matrix methods. [Pg.559]

The infrared ellipsometer is a combination of a Fourier-transform spectrometer (FTS) with a photometric ellipsometer. One of the two polarizers (the analyzer) is moved step by step in four or more azimuths, because the spectrum must be constant during the scan of the FTS. From these spectra, the tanf and cosd spectra are calculated. In this instance only A is determined in the range 0-180°, with severely reduced accuracy in the neighborhood of 0° and 180°. This problem can be overcome by using a retarder (compensator) with a phase shift of approximately 90° for a second measurement -cosd and sind are thereby measured independently with the full A information [4.315]. [Pg.269]

H-NMR studies were performed on a Bruker MSL-400 spectrometer operating in the Fourier transform mode, using a static multinuclei probehead operating at 400.13 MEtz. A pulse length of 1 iis is used for the 90° flip angle and the repetition time used (1 second) is longer than five times Tjz ( H) of the analyzed samples. [Pg.16]

Carbon monoxide and carbon dioxide can be measured using the FTIR techniques (Fourier transform infrared techniques see the later section on the Fourier transform infrared analyzer). Electrochemical cells have also been used to measure CO, and miniaturized optical sensors are available for CO 2 monitoring. [Pg.1297]

Fourier transform infrared (FTIR) analyzers can be used for industrial applications and m situ measurements in addition to conventional laboratory use. Industrial instruments are transportable, rugged and relatively simple to calibrate and operate. They are capable of analyzing many gas components and determining their concentrations, practically continuously. FTIR analyzers are based on the spectra characterization of infrared light absorbed by transitions in vibrational and rotational energy levels of heteroatomic molecules. [Pg.1303]

Most of the early vibration analysis was carried out using analog equipment, which necessitated the use of time-domain data. The reason for this is that it was difficult to convert time-domain data to frequency-domain data. Therefore, frequency-domain capability was not available until microprocessor-based analyzers incorporated a straightforward method (i.e.. Fast Fourier Transform, FFT) of transforming the time-domain spectmm into its frequency components. [Pg.683]

Most predictive-maintenance programs rely almost exclusively on frequency-domain vibration data. The microprocessor-based analyzers gather time-domain data and automatically convert it using Fast Fourier Transform (FFT) to frequency-domain data. A frequency-domain signature shows the machine s individual frequency components, or peaks. [Pg.700]

Instruments are available that can perform MS/MS type experiments using a single analyzer. These instruments trap and manipulate ions in a trapping cell, which also serves as the mass analyzer. The ion trap and fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers are examples. [Pg.14]

Fourier transform infrared (FTIR) spectroscopy (NaCl) shows no remaining carboxylic acid (1696 cm-1, carbonyl) but only ester groups (1736 cm 1, carbonyl) Mn(SEC) = 6530 Mn(1H NMR) = 1640 theory for third generation Mn = 2570.65 Polyesters of higher generation were synthesized according to this pseudo-one-step procedure and were analyzed by SEC, VPO, and 111 NMR.65... [Pg.116]

Sodium and ammonium lauryl sulfate, sodium lauryl ethoxysulfate, and several shampoos containing these sulfates have been analyzed directly by Fourier transform IR spectroscopy (FTIR) with a special sample cell, called... [Pg.284]

To check the identity and purity of the products obtained in the above reactions it is not sufficient to analyze for the sulfur content since a mixture may incidentally have the same S content. Either X-ray diffraction on single crystals or Raman spectra of powder-like or crystalline samples will help to identify the anion(s) present in the product. However, the most convincing information comes from laser desorption Fourier transform ion cyclotron resonance (FTICR) mass spectra in the negative ion mode (LD mass spectra). It has been demonstrated that pure samples of K2S3 and K2S5 show peaks originating from S radical anions which are of the same size as the dianions in the particular sample no fragment ions of this type were observed [28]. [Pg.132]

Ethylene-Propylene-Diene Monomer (EPDM) Compounding Rubber Process Analyzer-Fourier Transform (RPA-FT) Results at 100°C Total Torque Harmonic Content (TTHC) versus Strain Fit Parameters of Equation 30.4... [Pg.837]

The structure of poly(iminocarbonates) synthesized by the direct interfacial polymerization of BPA and cyanogen bromide was analyzed by NMR, Fourier transform infrared spectroscopy and elemental analysis and found to be identical in all aspects to authentic poly(imino-carbonates) obtained by solution polymerization (46). [Pg.218]

Fourier Transform (FT) Ranun spectroscopy (Model RFS 100/S, BRUKER Co.) using ND YAG laser was used to analyze the products on their structure electronic and vibration properties. The morphology of CNTs was observed by scanning dartron microscopy (SEM, Model S-4200, Hitach Co.) and transmission electron microscope (TEM, Modd JEOL 2000FX-ASID/EDS, Philips Co.). [Pg.750]

The essence of analyzing an EXAFS spectrum is to recognize all sine contributions in x(k)- The obvious mathematical tool with which to achieve this is Fourier analysis. The argument of each sine contribution in Eq. (8) depends on k (which is known), on r (to be determined), and on the phase shift

characteristic property of the scattering atom in a certain environment, and is best derived from the EXAFS spectrum of a reference compound for which all distances are known. The EXAFS information becomes accessible, if we convert it into a radial distribution function, 0 (r), by means of Fourier transformation ... [Pg.141]

Xiao H-K, Levine SP, D Arcy JB, et al. 1990. Comparison of the Fourier transform infrared (FTIR) spectrophotometer and the Miniature Infrared Analyzer (MIRAN ) for the determination of trichloroethylene (TCE) in the presence of Freon -113 in workplace air. Am Ind Hyg Assoc J 51 395-401. [Pg.298]


See other pages where Fourier transform analyzer is mentioned: [Pg.938]    [Pg.245]    [Pg.938]    [Pg.245]    [Pg.281]    [Pg.402]    [Pg.1827]    [Pg.2437]    [Pg.670]    [Pg.233]    [Pg.555]    [Pg.818]    [Pg.107]    [Pg.36]    [Pg.210]    [Pg.266]    [Pg.10]    [Pg.238]    [Pg.243]    [Pg.464]    [Pg.23]    [Pg.566]    [Pg.242]    [Pg.92]    [Pg.164]    [Pg.207]    [Pg.232]   
See also in sourсe #XX -- [ Pg.938 ]




SEARCH



Fourier analyzed

Fourier analyzer

© 2024 chempedia.info