Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formates hydrolysis, nucleophile

H)-Oxazolones react readily with nucleophiles, C(5) and C(2) be ing possible sites for attack, and, in the case of unsaturated azlactones, C(a) as well (see 199-201). It has been proved by using water labelled with lsO that the acid-catalyzed hydrolysis of unsaturated azlactones proceeds by alkyl-oxygen fission (equation 42). The formation, hydrolysis and reduction of 4-methylene-5(4H)-oxazolones is a well-established method for the synthesis of a-amino acids, e.g. phenylalanine (equation 43). The addition of hydrazoic acid to 5(4H)-oxazolones without methylene groups at C(4) likewise occurs exclusively at C(2) to yield tetrazoles by ring-opening and recyclization (equation 44). [Pg.203]

Because of coordination expansion, most metal alkoxides, other than silicon, are highly reactive toward hydrolysis and condensation. Precipitation occurs as soon as water is added. Therefore their chemical reactivity has to be decreased in order to avoid uncontrolled precipitation. This can be performed via the chemical modification of the molecular precursor prior to hydrolysis. Nucleophilic chemical additives are currently employed in order to stabilize highly reactive metal alkoxides and control the formation of condensed species. [Pg.4502]

Under mildly alkaline conditions and in the presence of excess cyclo-heptaamylose the rate of degradation of penicillin is increased 2(U90-fold compared with the rate of alkaline hydrolysis (Tutt and Schwartz, 1971). Michaelis-Menten kinetics are observed which are indicative of complex formation. The apparent binding constant of 6-substituted penicillins varies little with the length of the alkyl side chain although it is increased about 10-fold for diphenylmethyl penicillin. The reaction is catalytic and hydrolysis proceeds by the formation of a penicilloyl- 3-cyclodextrin covalent intermediate, i.e. ester formation, by nucleophilic attack of a carbohydrate hydroxyl on the P-lactam. [Pg.233]

The mechanism of acid catalyzed ester hydrolysis is presented m Figure 20 4 It IS precisely the reverse of the mechanism given for acid catalyzed ester formation m Section 19 14 Like other nucleophilic acyl substitutions it proceeds m two stages A... [Pg.849]

Cycloahphatics capable of tertiary carbocation formation are candidates for nucleophilic addition of nitriles. HCN in strong sulfuric acid transforms 1-methyl-1-cyclohexanol to 1-methyl-1-cyclohexylamine through the formamide (47). The terpenes pinene (14) [2437-95-8] and limonene [5989-27-5] (15) each undergo a double addition of HCN to provide, after hydrolysis, the cycloahphatic diamine 1,8-menthanediamine (16) (48). [Pg.210]

The 1-azirine ring also undergoes a number of reactions in which the heterocycle plays the role of the nucleophile. Although the basicity of the nitrogen atom in the azirine ring is much lower than in simple aliphatic amines, this system can still function as a nucleophilic reagent. One example of this involves the acid-catalyzed hydrolysis of 1-azirines to a-aminoketones (200) which represents a well-established reaction. In fact, in many reactions of 1-azirines where acid catalysis is used, formation of a-aminoketones is difficult to avoid (67JA44S6). [Pg.69]

The formation of ethyl cyano(pentafluorophenyl)acetate illustrates the intermolecular nucleophilic displacement of fluoride ion from an aromatic ring by a stabilized carbanion. The reaction proceeds readily as a result of the activation imparted by the electron-withdrawing fluorine atoms. The selective hydrolysis of a cyano ester to a nitrile has been described. (Pentafluorophenyl)acetonitrile has also been prepared by cyanide displacement on (pentafluorophenyl)methyl halides. However, this direct displacement is always aecompanied by an undesirable side reaetion to yield 15-20% of 2,3-bis(pentafluoro-phenyl)propionitrile. [Pg.82]

The other C=N systems included in Scheme 8.2 are more stable to aqueous hydrolysis than are the imines. For many of these compounds, the equilibrium constants for formation are high, even in aqueous solution. The additional stability can be attributed to the participation of the atom adjacent to the nitrogen in delocalized bonding. This resonance interaction tends to increase electron density at the sp carbon and reduces its reactivity toward nucleophiles. [Pg.460]

We should distinguish between the phrases nucleophilic attack and nucleophilic catalysis. Nucleophilic attack means the bond-forming approach by an electron pair of the nucleophile to an electron-deficient site on the substrate. In nucleophilic catalysis this results in an increase in the rate of reaction relative to the rate in the absence of the catalyst. However, nucleophilic attack may not result in catalysis. Thus, if methylamine is reacted with a phenyl acetate, the reaction observed is amide formation, not hydrolysis, because the product of the nucleophilic attack is more stable than is the ester to hydrolysis. [Pg.266]

FIGURE 11.29 The vicinal—OH groups of RNA are susceptible to nucleophilic attack leading to hydrolysis of the phosphodiester bond and fracture of the polynucleotide chain DNA lacks a 2 -OH vicinal to its 3 -0-phosphodiester backbone. Alkaline hydrolysis of RNA results in the formation of a mixture of 2 - and 3 -nucleoside monophosphates. [Pg.346]

DNA is not susceptible to alkaline hydrolysis. On the other hand, RNA is alkali labile and is readily hydrolyzed by dilute sodium hydroxide. Cleavage is random in RNA, and the ultimate products are a mixture of nucleoside 2 - and 3 -monophosphates. These products provide a clue to the reaction mechanism (Figure 11.29). Abstraction of the 2 -OH hydrogen by hydroxyl anion leaves a 2 -0 that carries out a nucleophilic attack on the phosphorus atom of the phosphate moiety, resulting in cleavage of the 5 -phosphodiester bond and formation of a cyclic 2, 3 -phosphate. This cyclic 2, 3 -phosphodiester is unstable and decomposes randomly to either a 2 - or 3 -phosphate ester. DNA has no 2 -OH therefore DNA is alkali stable. [Pg.347]

The effect of a substituent may be substantially modified by fast, concurrent, reversible addition of the nucleophile to an electrophilic center in the substituent. Ortho- and para-CS.0 and pam-CN groups have been found by Miller and co-workers to have a much reduced activating effect on the displacement of halogen in 2-nitrohaloben-zenes with methoxide ion [reversible formation of hemiacetal (143) and imido ester anions (144)] than with azide ion (less interaction) or thiocyanate (little, if any, interaction). Formation of 0-acyl derivatives of 0x0 derivatives or of A-oxides, hydrogen bonding to these moieties, and ionization of substituents are other examples of reversible and often relatively complete modifications under reaction conditions. If the interaction is irreversible, such as hydrolysis of a... [Pg.218]

Even polyalkoxy-s-triazines are quite prone to nucleophilic substitution. For example, 2,4,6-trimethoxy-s-triazine (320) is rapidly hydrolyzed (20°, dilute aqueous alkali) to the anion of 4,6-dimethoxy-s-triazin-2(l )-one (331). This reaction is undoubtedly an /S jvr-4r2 reaction and not an aliphatic dealkylation. The latter type occurs with anilines at much higher temperatures (150-200°) and with chloride ion in the reaction of non-basified alcohols with cyanuric chloride at reflux temperatures. The reported dealkylation with methoxide has been shown to be hydrolysis by traces of water present. Several analogous dealkylations by alkoxide ion, reported without evidence for the formation of the dialkyl ether, are all associated with the high reactivity of the alkoxy compounds which ai e, in fact, hydrolyzed by usually tolerable traces of water. Brown ... [Pg.304]

The reaction of wasabi phytoalexin (109) with excess 15% aqueous NaSMe gives methyl 2-methylthioindole-3-carboxylate (184,70%) and 140 (20%). In this reaction, formation of 2-methylthioindole-3-carboxylic acid (185) is not observed under various reaction conditions. The fact indicates that once 140 is formed, it does not undergo nucleophilic substitution reaction. In addition, hydrolysis of the... [Pg.126]

We have disclosed that the ligands 4c, 10, and 77, when complexed with a metal ion such as Zn2 +, Ni2+, or Co2+, become highly active toward the hydrolysis of p-nitrophenyl picolinate (7). The catalysis is most likely to occur through formation of a ternary complex in the transition state or in reactive intermediates. The metal ion in such a complex serves to activate the ligand hydroxyl group for nucleophilic attack and to orient the substrate into a favorable position to undergo the reaction. [Pg.150]


See other pages where Formates hydrolysis, nucleophile is mentioned: [Pg.395]    [Pg.172]    [Pg.644]    [Pg.134]    [Pg.983]    [Pg.1097]    [Pg.54]    [Pg.389]    [Pg.644]    [Pg.76]    [Pg.331]    [Pg.681]    [Pg.281]    [Pg.283]    [Pg.43]    [Pg.258]    [Pg.14]    [Pg.299]    [Pg.310]    [Pg.289]    [Pg.331]    [Pg.146]    [Pg.136]    [Pg.511]    [Pg.156]    [Pg.215]    [Pg.181]    [Pg.78]   


SEARCH



Hydrolysis formates, nucleophile isotope

Nucleophile isotope effects formate hydrolysis

Nucleophiles formation

© 2024 chempedia.info