Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde insertion

Pd, or Ni (Scheme 5-3). First, P-H oxidative addition of PH3 or hydroxymethyl-substituted derivatives gives a phosphido hydride complex. P-C bond formation was then suggested to occur in two possible pathways. In one, formaldehyde insertion into the M-H bond gives a hydroxymethyl complex, which undergoes P-C reductive elimination to give the product. Alternatively, nucleophilic attack of the phosphido group on formaldehyde gives a zwitterionic species, followed by proton transfer to form the O-H bond [7]. [Pg.145]

In contrast, for the DOP the reaction of the methoxymethylium cation at low temperature was considered to give mostly cationated DOP instead of ring expansion. These observations support our finding of initial DOP homopolymerization without formaldehyde insertion in TOX/DOP copolymerization. [Pg.240]

Mix 50 ml. of formalin, containing about 37 per cent, of formaldehyde, with 40 ml. of concentrated ammonia solution (sp. gr. 0- 88) in a 200 ml. round-bottomed flask. Insert a two-holed cork or rubber stopper carrying a capillary tube drawn out at the lower end (as for vacuum distillation) and reaching almost to the bottom of the flask, and also a short outlet tube connected through a filter flask to a water pump. Evaporate the contents of the flask as far as possible on a water bath under reduced pressure. Add a further 40 ml. of concentrated ammonia solution and repeat the evaporation. Attach a reflux condenser to the flask, add sufficient absolute ethyl alcohol (about 100 ml.) in small portions to dissolve most of the residue, heat under reflux for a few minutes and filter the hot alcoholic extract, preferably through a hot water fuimel (all flames in the vicinity must be extinguished). When cold, filter the hexamine, wash it with a little absolute alcohol, and dry in the air. The yield is 10 g. Treat the filtrate with an equal volume of dry ether and cool in ice. A fiulher 2 g. of hexamine is obtained. [Pg.326]

An attempt to measure the IR spectrum of the hydroxy carbene [28] after UV photolysis (A>220 nm) of formaldehyde isolated in an argon matrix was unsuccessful (Sodeau and Lee, 1978). Instead of [28] only hydroxyacetal-dehyde resulting from carbene insertion into the C—H bond of the starting formaldehyde was found in the reaction products. Due to its small size, the... [Pg.15]

The acrylate complex 10 was suggested to be the major solution species during catalysis, since the equilibrium in Scheme 5-11, Eq. (2) lies to the right (fQq > 100)-Phosphine exchange at Pt was observed by NMR, but no evidence for four-coordinate PtL, was obtained. These observations help to explain why the excess of phosphine present (both products and starting materials) does not poison the catalyst. Pringle proposed a mechanism similar to that for formaldehyde and acrylonitrile hydrophosphination, involving P-H oxidative addition, insertion of olefin into the M-H bond, and P-C reductive elimination (as in Schemes 5-3 and 5-5) [11,12]. [Pg.149]

Note that carbon monoxide inserts into the Zr-H bond of 1 (2 equiv.) to afford an T -formaldehydo-type complex [(Cp2ZrCl)]2(g-CH20) [200-202]. Iminoacyl zir-conocene complexes are formed after addition of 1 to isonitriles [203]. Carbon dioxide [183, 202] is reduced to formaldehyde with 1 (2 equiv.). C02-like molecules such as isocyanates RNCO [204], isothiocyanates RNCS [205], and carbodiimides RNCNR [204] are readily converted to the corresponding bidentate form-amido ligands. [Pg.267]

An early example came from the report in 1985 by Darensbourg et al. on the reactions of [HCr(CO)5p and [HCr(CO)4P(OMe3)3] with aldehydes and ketones, in the presence and absence of acids [27]. Paraformaldehyde reacts readily with PPN+[HCr(CO)5] PPN+ = N(PPh3)J giving the alkoxide complex [(CO)5CrOCH3] through insertion of formaldehyde into the Cr-H bond (Eq. (18)). The addition of HOAc produced methanol (Eq. (19)). [Pg.168]

Hydrogenation to both formaldehyde and formic acid is catalyzed by K[RuCl(EDTA-H)] [21, 112, 113], but the proposed mechanism involved a highly unlikely reverse insertion of C02 (Eq. (19)). [Pg.506]

HCHO and PH3 proceeds in the presence of K2PtCl4 at room temperature and affords the crystalline product in an essentially quantitative yield in 2.5 h [4]. Palladium compounds are also active in the catalysis [5]. In these reactions the active species is believed to be zero valent. Two mechanistic possibilities have been proposed as illustrated in Scheme 2. The first elemental process involved in the catalytic cycle is oxidative addition of a P-H bond, which is well precedented [6]. In one of the mechanistic possibilities the processes that follow the oxidative addition are the insertion of the C=0 bond into H-M species and P-C reductive elimination, the latter of which is also precedented [7]. In the other, the coordinating phosphide ligand makes a nucleophilic attack [8] at the formaldehyde carbon forming zwitterionic species. [Pg.27]

Trioxane polymerizations proceed with induction periods, which correspond to the buildup of the equilibrium concentration of formaldehyde [Lu et al., 1990]. This also corresponds to a buildup in 1,3,5,7-tetroxocane, apparently by insertion of formaldehyde into... [Pg.561]

Formate production has also been reported for electropolymerized films of [Co(4-vinylterpyridine)2] " on glassy carbon electrodes in dimethylformamide solutions [63]. Interestingly, the product of this same catalytic system in aqueous solutions is formaldehyde [81]. Other heterogeneous systems that produce formate include Cd, Sn, Pb, In, and Zn electrodes in aqueous media [12] (see also Vol VII 5.2.3). It is likely that the pathway to formate formation on metal electrodes follows the sequence of M—H bond formation followed by CO2 insertion to form a M—0C(0)H species followed by desorption from the electrode surface. [Pg.216]

RCH2OH + Co2(CO)7 (72) A known reaction of cobalt hydrocarbonyl suggests that the cobalt-carbon bond may be preferred. It has been reported that, under rather vigorous conditions, acetaldehyde or formaldehyde react with CO and a cobalt catalyst to give o -hydroxy acids or esters in alcohol solution (7). The intermediate with the carbon-cobalt bond probably is undergoing a CO insertion reaction, folllwed by a hydrolysis or... [Pg.201]


See other pages where Formaldehyde insertion is mentioned: [Pg.385]    [Pg.385]    [Pg.262]    [Pg.262]    [Pg.6407]    [Pg.202]    [Pg.203]    [Pg.370]    [Pg.385]    [Pg.385]    [Pg.262]    [Pg.262]    [Pg.6407]    [Pg.202]    [Pg.203]    [Pg.370]    [Pg.417]    [Pg.415]    [Pg.144]    [Pg.335]    [Pg.650]    [Pg.684]    [Pg.156]    [Pg.91]    [Pg.33]    [Pg.34]    [Pg.357]    [Pg.49]    [Pg.415]    [Pg.416]    [Pg.252]    [Pg.291]    [Pg.67]    [Pg.218]    [Pg.242]    [Pg.80]    [Pg.122]    [Pg.157]    [Pg.544]    [Pg.69]    [Pg.256]    [Pg.220]    [Pg.472]    [Pg.487]   
See also in sourсe #XX -- [ Pg.370 ]




SEARCH



© 2024 chempedia.info