Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde distribution

Figures 4.6—4.8 are the results for the stoichiometric propane-air flame. Figure 4.6 reports the variance of the major species, temperature, and heat release Figure 4.7 reports the major stable propane fragment distribution due to the proceeding reactions and Figure 4.8 shows the radical and formaldehyde distributions—all as a function of a spatial distance through the flame wave. As stated, the total wave thickness is chosen from the point at which one of the reactant mole fractions begins to decay to the point at which the heat release rate begins to taper off sharply. Since the point of initial reactant decay corresponds closely to the initial perceptive rise in temperature, the initial thermoneutral period is quite short. The heat release rate curve would ordinarily drop to zero sharply except that the recombination of the radicals in the burned gas zone contribute some energy. The choice of the position that separates the preheat zone and the reaction zone has been made to account for the slight exothermicity of the fuel attack reactions by radicals which have diffused into... Figures 4.6—4.8 are the results for the stoichiometric propane-air flame. Figure 4.6 reports the variance of the major species, temperature, and heat release Figure 4.7 reports the major stable propane fragment distribution due to the proceeding reactions and Figure 4.8 shows the radical and formaldehyde distributions—all as a function of a spatial distance through the flame wave. As stated, the total wave thickness is chosen from the point at which one of the reactant mole fractions begins to decay to the point at which the heat release rate begins to taper off sharply. Since the point of initial reactant decay corresponds closely to the initial perceptive rise in temperature, the initial thermoneutral period is quite short. The heat release rate curve would ordinarily drop to zero sharply except that the recombination of the radicals in the burned gas zone contribute some energy. The choice of the position that separates the preheat zone and the reaction zone has been made to account for the slight exothermicity of the fuel attack reactions by radicals which have diffused into...
Miller W H, Hernandez R, Moore C B and Polik W F A 1990 Transition state theory-based statistical distribution of unimolecular decay rates with application to unimolecular decomposition of formaldehyde J. Chem. Phys. 93 5657-66... [Pg.1043]

Formaldehyde homopolymer is composed exclusively of repeating oxymethylene units and is described by the term poly oxymethylene (POM) [9002-81-7]. Commercially significant copolymers, for example [95327-43-8] have a minor fraction (typically less than 5 mol %) of alkyUdene or other units, derived from cycHc ethers or cycHc formals, distributed along the polymer chain. The occasional break in the oxymethylene sequences has significant ramifications for polymer stabilization. [Pg.56]

Formaldehyde solutions exist as a mixture of oligomers, H0(CH20) H. Their distribution has been deterrnined for 6—50 wt % HCHO solutions with low methanol using nmr and gas chromatographic techniques (28,29). Averages of the equiUbtium constants for equation 4 ate K2 = 7.1, = 4.7,... [Pg.491]

Fomialdehyde is a basic chemical budding block for the production of a wide range of chemicals finding a wide variety of end uses such as wood products, plastics, and coatings. Table 6 shows the distribution of formaldehyde production in the United States from 1966 through 1989 (115). Production percentages reported in the following discussion are for the United States. [Pg.497]

Table 6. U.S. Distribution of Formaldehyde Production According to Uses, 1966—1989 ... Table 6. U.S. Distribution of Formaldehyde Production According to Uses, 1966—1989 ...
Process parameters can be varied to change the MDA isomer distribution and oligomeric content of PMDA products. Generally, aniline to formaldehyde molar ratios of 2 to 5 are used. To increase the MDA content, higher ratios of aniline to formaldehyde are employed. Increasing the acid to aniline ratio also increases the 4,4 -MDA content of the diamine fraction. Historically, the polyurethane industry consumes as much of the 4,4 -MDI isomer as possible. Recently, however, there has been an increasing demand for higher 2,4 -MDI and 2,4 -PMDI products to be used as replacements for... [Pg.249]

The urea—formaldehyde reaction results in a distribution of methylene urea (MU) polymers of varying molecular weights or polymer chain lengths and of varying water solubiUty. [Pg.130]

The nitrogen content of granular urea—formaldehyde reaction products typicahy ranges from 35 to 42% depending on the methylene urea polymer distribution. [Pg.130]

In actual practice, the reaction of urea with formaldehyde produces a distribution of polymers of varying chain length. The distribution is affected by the U/E mole ratio as well as reaction conditions such as pH, temperature, and reaction time. In general, higher U/E ratios produce polymer distributions... [Pg.131]

Isohutyhdene Diurea., This is the condensation product of urea and isobutyraldehyde. Unlike the condensation of urea with formaldehyde, which forms a distribution of different UF polymer chain lengths, the reaction of urea with isobutyraldehyde forms a single oligomer. Although similar in chemical stmcture to methylene diurea (MDU), its physical properties are quite different (Table 4). [Pg.132]

The lower cost of the urea-modified PF resins is a combination of PF solids extension by lower cost urea and improved adhesion and distribution capabilities. The improvements in storage stability stem from the thinning and dilution effects as well as from the formaldehyde scavenging. Liquid PF resoles with high free formaldehyde contents tend to be less stable in storage. [Pg.895]

A chemical manufactured at the facility that does not remain in a product distributed by the facility. A threshold determination must be made on the annual quantity of the chemical manufactured regardless of the concentration. For example, quantities of formaldehyde created as a result of waste treatment must be applied toward the threshold for manufacture of this chemical, regardless of the concentration of this chemical in the wastestream. [Pg.31]

Another way of obtaining information about the distribution of electrons is by computing the polarizability. This property depends on the second derivative of the energy with respect to an electric field. We ll examine the polarizability of formaldehyde in Chapter 4. [Pg.21]

Examine the geometry of formamide. Is the CN bond shorter than expected for a normal single bond (in methylamine), and closer to that expected for a full double bond (in methyleneimine) Is the CO bond longer than that expected in a carbonyl compound (in formaldehyde), perhaps closer to that appropriate for a single bond (in methanol) Also, compare the electrostatic potential map for formamide with those of formaldehyde and methylamine. Is the CO bond in formamide more or less polar than that in formaldehyde Is the CN bond in formamide more or less polar than that in methylamine Draw whatever Lewis structures are needed to properly describe the geometry and charge distribution of formamide. [Pg.227]

These experiments use the product state distribution technique to allow a qualitative characterization of the competition between multiple electronic states. In contrast to the pathway competition in the molecular channel of formaldehyde (Section V.D), where the correlated product state distributions delineate the two channels quite cleanly, it will likely more often be the case that the product state distribution method allows only qualitative separation, due to overlapping distributions. Nevertheless, such experiments provide critical insight into pathway competition. [Pg.256]

P 48] Initially, a solution of 2.0 mM formaldehyde in methanol (5 pi min ) and pure methanol (5 pi min ) were fed through a bifurcation-distributive chip micro mixer [25]. The methanol stream was replaced by a methanol solution of 2.0 mM isocyanide and 0.2 mM amine salt. The reaction was carried out at room temperature and no purification steps were applied. [Pg.515]

Similar ideas can be applied to formaldehyde oxidation. For bulk formaldehyde oxidation, we found predominant formic acid formation under current reaction conditions rather than CO2 formation. Hence, it cannot be ruled out, and may even be realistic, that formaldehyde is first oxidized to formic acid, which can subsequently be oxidized to CO2. The steady-state product distribution at 0.6 V is much more favorable for such a mechanism as in the case of methanol oxidation. On the other hand, because of the high efficiency of COad formation from formaldehyde, this process is likely to proceed directly from formaldehyde adsorption rather than via formation and re-adsorption of formic acid. Alternatively, the second oxygen can be introduced via formaldehyde hydration to methylene glycol, which could be further oxidized to formic acid and finally to CO2 (see the next paragraph). [Pg.447]

The effluent generated during the production of the resins arises from different operations within the factory. The effluent of the production processes comes mainly from cleaning operations of reactors, storage tanks, filters from the towers of formaldehyde production, and the filters from the reactors. Another source for disposal comprises the spills occurring during the transfer of the resins from the reactors to the storage tanks and from these to the truck used to distribute them to other factories. [Pg.762]


See other pages where Formaldehyde distribution is mentioned: [Pg.433]    [Pg.247]    [Pg.249]    [Pg.250]    [Pg.332]    [Pg.47]    [Pg.233]    [Pg.291]    [Pg.662]    [Pg.21]    [Pg.311]    [Pg.99]    [Pg.242]    [Pg.243]    [Pg.4]    [Pg.357]    [Pg.188]    [Pg.412]    [Pg.413]    [Pg.416]    [Pg.420]    [Pg.445]    [Pg.452]    [Pg.453]    [Pg.548]    [Pg.403]    [Pg.92]    [Pg.361]   
See also in sourсe #XX -- [ Pg.5 , Pg.90 , Pg.91 ]




SEARCH



© 2024 chempedia.info