Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Force CHARMM

Very recently, we have developed and incorporated into the CHARMM molecular mechanics program a version of LN that uses direct-force evaluation, rather than linearization, for the fast-force components [91]. The scheme can be used in combination with SHAKE (e.g., for freezing bond lengths) and with periodic boundary conditions. Results for solvated protein and nucleic-... [Pg.255]

In this case, only two parameters (k and Iq) per atom pair are needed, and the computation of a quadratic function is less expensive. Therefore, this type of expression is used especially by biomolecular force fields (AMBER, CHARMM, GROMOS) dealing with large molecules like proteins, lipids, or DNA. [Pg.342]

N is the number of point charges within the molecule and Sq is the dielectric permittivity of the vacuum. This form is used especially in force fields like AMBER and CHARMM for proteins. As already mentioned, Coulombic 1,4-non-bonded interactions interfere with 1,4-torsional potentials and are therefore scaled (e.g., by 1 1.2 in AMBER). Please be aware that Coulombic interactions, unlike the bonded contributions to the PEF presented above, are not limited to a single molecule. If the system under consideration contains more than one molecule (like a peptide in a box of water), non-bonded interactions have to be calculated between the molecules, too. This principle also holds for the non-bonded van der Waals interactions, which are discussed in Section 7.2.3.6. [Pg.345]

Th c fun ction al form for bon d stretch in g in HlOa, as in CHARMM, is quadratic only and is identical to that shown in equation (1 1) on page I 75. Th e bond stretch in g force con stan ts are in units of... [Pg.193]

Chemistry at Harvard macromolecular mechanics (CHARMM) is the name of both a force field and a program incorporating that force field. The academic version of this program is designated CHARMM and the commercial version is called CHARMm. It was originally devised for proteins and nucleic acids. It has... [Pg.53]

The AMBER and CHARMM force fields are best suited for protein and nucleic acid studies. [Pg.57]

ChemSketch has some special-purpose building functions. The peptide builder creates a line structure from the protein sequence defined with the typical three-letter abbreviations. The carbohydrate builder creates a structure from a text string description of the molecule. The nucleic acid builder creates a structure from the typical one-letter abbreviations. There is a function to clean up the shape of the structure (i.e., make bond lengths equivalent). There is also a three-dimensional optimization routine, which uses a proprietary modification of the CHARMM force field. It is possible to set the molecule line drawing mode to obey the conventions of several different publishers. [Pg.326]

CHARMM (chemistry at Harvard macromolecular mechanics) a molecular mechanics force field... [Pg.361]

Note The BIO+ force field is an implementation of the CHARMM (Chemistry at HARvard Macromolecular Mechanics) force field developed in the group of Martin Karplus at Harvard University. Like AMBER and OPLS, it is primarily designed to explore macromolecules. [Pg.101]

The HyperChem BIOh- force field gives results equivalent to CHARMM using the same CHARMM parameter sets. [Pg.193]

HyperChem uses the improper dihedral angle formed by central atom - neighbor 1 - neighbor 2 - neighbor 3, where the order of neighbors is how they appear in a HIN file. Not all planar atoms customarily have associated improper torsions. The order of atoms is arbitrary but has been consistently chosen by the original authors of the CHARMM force field. The templates contain equivalent CHARMM definitions of improper torsions for amino acids. Improper dihedral angles cannot be defined that do not have a central atom, as is sometimes done in CHARMM calculations. [Pg.195]

The BIOh- force field option in HyperChem has no hydrogen bonding term. This is consistent with evolution and common use of the CHARMM force field (even the 1983 paper did not use a hydrogen bonding term in its example calculations and mentioned that the functional form used then was unsatisfactory and under review). [Pg.196]

To date, a number of simulation studies have been performed on nucleic acids and proteins using both AMBER and CHARMM. A direct comparison of crystal simulations of bovine pancreatic trypsin inliibitor show that the two force fields behave similarly, although differences in solvent-protein interactions are evident [24]. Side-by-side tests have also been performed on a DNA duplex, showing both force fields to be in reasonable agreement with experiment although significant, and different, problems were evident in both cases [25]. It should be noted that as of the writing of this chapter revised versions of both the AMBER and CHARMM nucleic acid force fields had become available. Several simulations of membranes have been performed with the CHARMM force field for both saturated [26] and unsaturated [27] lipids. The availability of both protein and nucleic acid parameters in AMBER and CHARMM allows for protein-nucleic acid complexes to be studied with both force fields (see Chapter 20), whereas protein-lipid (see Chapter 21) and DNA-lipid simulations can also be performed with CHARMM. [Pg.13]

It should also be noted that a force field for a wide variety of small molecules, CHARMm (note the small m, indicating the commercial version of the program and parameters), is available [39] and has been applied to protein simulations with limited success. Efforts are currently under way to extend the CHARMm small molecule force field to make the nonbonded parameters consistent with those of the CHARMM force fields, thereby allowing for a variety of small molecules to be included in computational smdies of biological systems. [Pg.14]

Of the biomolecular force fields, AMBER [21] is considered to be transferable, whereas academic CHARMM [20] is not transferable. Considering the simplistic form of the potential energy functions used in these force fields, the extent of transferability should be considered to be minimal, as has been shown recently [52]. As stated above, the user should perform suitable tests on any novel compounds to ensure that the force field is treating the systems of interest with sufficient accuracy. [Pg.17]

E. Extension of Available Force Fields Application to CHARMM... [Pg.23]

Finally, the parametrization of the van der Waals part of the QM-MM interaction must be considered. This applies to all QM-MM implementations irrespective of the quantum method being employed. From Eq. (9) it can be seen that each quantum atom needs to have two Lennard-Jones parameters associated with it in order to have a van der Walls interaction with classical atoms. Generally, there are two approaches to this problem. The first is to derive a set of parameters, e, and G, for each common atom type and then to use this standard set for any study that requires a QM-MM study. This is the most common aproach, and the derived Lennard-Jones parameters for the quantum atoms are simply the parameters found in the MM force field for the analogous atom types. For example, a study that employed a QM-MM method implemented in the program CHARMM [48] would use the appropriate Lennard-Jones parameters of the CHARMM force field [52] for the atoms in the quantum region. [Pg.225]

CHARMM force field https //rxsecure.umaryland.edu/research/amackere/re-... [Pg.459]


See other pages where Force CHARMM is mentioned: [Pg.308]    [Pg.147]    [Pg.347]    [Pg.354]    [Pg.195]    [Pg.193]    [Pg.194]    [Pg.196]    [Pg.408]    [Pg.12]    [Pg.12]    [Pg.13]    [Pg.14]    [Pg.17]    [Pg.21]    [Pg.23]    [Pg.27]    [Pg.30]    [Pg.33]    [Pg.34]    [Pg.138]    [Pg.228]    [Pg.443]    [Pg.443]    [Pg.450]    [Pg.451]    [Pg.451]    [Pg.451]    [Pg.41]   
See also in sourсe #XX -- [ Pg.159 , Pg.174 , Pg.336 ]




SEARCH



CHARMM

CHARMM force field

CHARMM force field potential energy surface

CHARMM force field, molecular modelling

CHARMM force-fields/model

CHARMm force fields energy function

CHARMm force fields link atoms

CHARMm force fields software packages

Force fields, Molecular Mechanics CHARMM

Historical Overview of the CHARMM Drude Polarizable Force Field for Small Molecules and Biological Polymers

Polarizable Force Fields in CHARMM

© 2024 chempedia.info