Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Folate methylene tetrahydrofolate

Kaye JM, Stanton KG, McCann VJ, Vasikaran VB, Taylors RR, van Bockxmeer FM. 2002. Homocysteine, folate, methylene tetrahydrofolate reductase genotype and vascular morbidity in diabetic subjects. Clin Sci 102 631-637. [Pg.64]

The antimetabolite, raltitrexed, is a folate analogue and is a potent and specific inhibitor of the enzyme thymidylate synthase. Inhibition of this enzyme ultimately interferes with the synthesis of deoxyribonucleic acid (DNA) leading to cell death. The intracellular polyglutamation of raltitrexed leads to the formation within cells of even more potent inhibitors of thymidylate synthase. Folate (methylene tetrahydrofolate) is a co-faetor required by thymidylate synthase and therefore theoretically folinic acid or folic acid may interfere with the aetion of raltitrexed. Clinieal interaction studies have not yet been undertaken to confirm these predieted inter-aetions. ... [Pg.657]

The major point of entry for one-carbon fragments into substimted folates is methylene tetrahydrofolate (Figure 45-16), which is formed by the reaction of glycine, serine, and choHne with tetrahydrofolate. Serine is the most important source of substituted folates for biosynthetic reactions, and the activity of serine hy-... [Pg.493]

When acting as a methyl donor, 5-adenosylmethionine forms homocysteine, which may be remethylated by methyltetrahydrofolate catalyzed by methionine synthase, a vitamin Bj2-dependent enzyme (Figure 45-14). The reduction of methylene-tetrahydrofolate to methyltetrahydrofolate is irreversible, and since the major source of tetrahydrofolate for tissues is methyl-tetrahydrofolate, the role of methionine synthase is vital and provides a link between the functions of folate and vitamin B,2. Impairment of methionine synthase in Bj2 deficiency results in the accumulation of methyl-tetrahydrofolate—the folate trap. There is therefore functional deficiency of folate secondary to the deficiency of vitamin B,2. [Pg.494]

Supplements of 400 Ig/d of folate begun before conception result in a significant reduction in the incidence of neural mbe defects as found in spina bifida. Elevated blood homocysteine is an associated risk factor for atherosclerosis, thrombosis, and hypertension. The condition is due to impaired abihty to form methyl-tetrahydrofolate by methylene-tetrahydrofolate reductase, causing functional folate deficiency and resulting in failure to remethylate homocysteine to methionine. People with the causative abnormal variant of methylene-tetrahydrofolate reductase do not develop hyperhomocysteinemia if they have a relatively high intake of folate, but it is not yet known whether this affects the incidence of cardiovascular disease. [Pg.494]

Fig. 14.1 Cellular pathway of methotrexate. ABCBl, ABCCl-4, ABC transporters ADA, adenosine deaminase ADP, adenosine diphosphate AICAR, aminoimidazole carboxamide ribonucleotide AMP, adenosine monophosphate ATIC, AICAR transformylase ATP, adenosine triphosphate SjlO-CH -THF, 5,10-methylene tetrahydrofolate 5-CHj-THF, 5-methyl tetrahydro-folate DHFR, dihydrofolate reductase dTMP, deoxythymidine monophosphate dUMP, deoxy-uridine monophosphate FAICAR, 10-formyl AICAR FH, dihydrofolate FPGS, folylpolyglutamyl synthase GGH, y-glutamyl hydrolase IMP, inosine monophosphate MTHFR, methylene tetrahydrofolate reductase MTR, methyl tetrahydrofolate reductase MTX-PG, methotrexate polyglutamate RFCl, reduced folate carrier 1 TYMS, thymidylate synthase. Italicized genes have been targets of pharmacogenetic analyses in studies published so far. (Reproduced from ref. 73 by permission of John Wiley and Sons Inc.)... Fig. 14.1 Cellular pathway of methotrexate. ABCBl, ABCCl-4, ABC transporters ADA, adenosine deaminase ADP, adenosine diphosphate AICAR, aminoimidazole carboxamide ribonucleotide AMP, adenosine monophosphate ATIC, AICAR transformylase ATP, adenosine triphosphate SjlO-CH -THF, 5,10-methylene tetrahydrofolate 5-CHj-THF, 5-methyl tetrahydro-folate DHFR, dihydrofolate reductase dTMP, deoxythymidine monophosphate dUMP, deoxy-uridine monophosphate FAICAR, 10-formyl AICAR FH, dihydrofolate FPGS, folylpolyglutamyl synthase GGH, y-glutamyl hydrolase IMP, inosine monophosphate MTHFR, methylene tetrahydrofolate reductase MTR, methyl tetrahydrofolate reductase MTX-PG, methotrexate polyglutamate RFCl, reduced folate carrier 1 TYMS, thymidylate synthase. Italicized genes have been targets of pharmacogenetic analyses in studies published so far. (Reproduced from ref. 73 by permission of John Wiley and Sons Inc.)...
Thymidylate synthase [EC 2.1.1.45] reductively methylates 2 -deoxyuridine-5 -monophosphate to form 2 -deoxythymidine-5 -monophosphate in the following folate-dependent reaction dUMP + A, A -methylene-tetrahydrofolate dTMP + dihydrofolate. [Pg.677]

Figure 10-5. Conversion of deoxyuridylate (dUMP) to deoxythymidylate (dTMP) by thymidylate synthetase. The importance of folate coenzymes in this reaction is illustrated. NADPH + H provide the necessary reducing equivalents and serine is the source of one-carbon units present on N, N °-methylene tetrahydrofolate (THF). Figure 10-5. Conversion of deoxyuridylate (dUMP) to deoxythymidylate (dTMP) by thymidylate synthetase. The importance of folate coenzymes in this reaction is illustrated. NADPH + H provide the necessary reducing equivalents and serine is the source of one-carbon units present on N, N °-methylene tetrahydrofolate (THF).
The other major class of antimalarials are the folate synthesis antagonists. There is a considerable difference in the drug sensitivity and affinity of dihydrofolate reductase enzyme (DHFR) between humans and the Plasmodium parasite. The parasite can therefore be eliminated successfully without excessive toxic effects to the human host. DHFR inhibitors block the reaction that transforms deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) at the end of the pyrimidine-synthetic pathway. This reaction, a methylation, requires N °-methylene-tetrahydrofolate as a carbon carrier, which is oxidized to dihydrofolate. If the dihydrofolate cannot then be reduced back to tetrahydrofolate (THF), this essential step in DNA synthesis will come to a standstill. [Pg.587]

CFD is further associated with the following inherited metabolic disorders 5,10-methylen-tetrahydrofolate reductase (MTHFR) deficiency [7], 3-phos-phoglycerate dehydrogenase (PGDH) deficiency [8], dihydropteridine reductase (DHPR) deficiency [9], as well as with Rett syndrome [10], and Aicardi-Gou res Syndrome [11]. Furthermore, folate deficiency may be associated with congenital folate malabsorption, severe malnutrition, and formiminotransferase deficiency. [Pg.717]

Site of action 5-FU per se is devoid of antineoplastic activity and must be converted to the corresponding deoxynucleotide (5-FdUMP, Figure 38.9), which competes with deoxyuridine monophosphate (dUMP) for thymidylate synthetase. 5-FdUMP acts as a pseudosubstrate and is entrapped with the enzyme and its N5,N10-methylene tetrahydrofolic acid coenzyme in a ternary complex that cannot proceed to products. DNA synthesis decreases due to lack of thymidine, leading to imbalanced cell growth and cell death. [Note Leucovorin is given with 5-FU because the reduced folate coenzyme is required in the thymidylate synthetase reaction. Lack of sufficient coenzyme reduces the effectiveness of the antipyrimidine.] 5-FU is also incorporated into RNA and low levels have been detected in DNA. [Pg.393]

Riboflavin (vitamin B2) Folate cycle reduction of 5,10-methyltetrahydrofolate cofactor for methylene-tetrahydrofolate reductase... [Pg.231]

In the folate coenzymes, the pteridine ring is fully reduced to tetrahydro-folate, although the oxidized form, dihydrofolate, is an important metabolic intermediate. In the reactions of thymidylate synthetase (Section 10.3.3) and methylene tetrahydrofolate reductase (Section 10.3.2.1), the pteridine ring has a redox role in the reaction. The folate coenzymes are conjugated with up to six additional glutamate residues, finked by y-glutamyl peptide bonds. [Pg.271]

The major point of entry for one-carbon fragments into substituted folates is methylene-tetrahydrofolate, which is formed by the catabolism of glycine, serine, and choline. [Pg.279]

Methylene-, methenyl-, and 10-formyl-tetrahydrofolates are freely interconvertible. The two activities involved - methylene-tetrahydrofolate dehydrogenase and methenyl-tetrahydrofolate cyclohydrolase - form a trifunctional enzyme with 10-formyl-tetrahydrofolate synthetase (Paukert et al., 1976). This means that single-carbon fragments entering the folate pool in any form other than as methyl-tetrahydrofolate can be readily available for any of the biosynthetic reactions shown in Figure 10.4. [Pg.283]

Methylene-Tetrahydrofolate Reductase The reduction of methylene-tetrahydrofolate to methyl-tetrahydrofolate, shown in Figure 10.7, is catalyzed hy methylene-tetrahydrofolate reductase, a flavin adenine dinucleotide-dependent enzyme during the reaction, the pteridine ring of the substrate is oxidized to dihydrofolate, then reduced to tetrahydrofolate by the flavin, which is reduced by nicotinamide adenine dinucleotide phosphate (NADPH Matthews and Daubner, 1982). The reaction is irreversible under physiological conditions, and methyl-tetrahydrofolate - which is the main form of folate taken up into tissues (Section 10.2.2) - can only be utilized after demethylation catalyzed by methionine synthetase (Section 10.3.4). [Pg.284]

This functional deficiency of folate is exacerbated by the associated low concentrations of methionine and S-adenosyl methioitine, although most tissues (apart from the central nervous system) also have betaine-homocysteine methyltransferase that may be adequate to maintain tissue pools of methionine. Under normal conditions S-adenosyl methioitine inhibits methylene-tetrahydrofolate reductase and prevents the formation of further methyl-tetrahydrofolate. Relief of this inhibition results in increased reduction of one-carbon substituted tetrahydrofolates to methyl-tetrahydrofolate. [Pg.292]

The cause of megaloblastosis is depressed DNA synthesis, as a result of impaired methylation of dCDP to TDP, catalyzed by thymidylate synthetase, but more or less normal synthesis of RNA. As discussed in Section 10.3.3, thymidylate synthetase uses methylene tetrahydrofolate as the methyl donor it is obvious that folic acid deficiency will result in unpaired thymidylate synthesis. It is less easy to see how vitamin B12 deficiency results in impaired thymidylate synthesis without invoking the methyl folate trap hypothesis (Section 10.3.4.1). The main circulating form of folic acid is methyl-tetrahydrofolate before this can be used for other reactions in tissues, it must be demethylated to yield free folic acid. The only reaction that achieves this is the reaction of methionine synthetase (Section 10.8.1). Thus, vitamin B12 deficiency results in a functional deficiency of folate. [Pg.308]

Administration of diphenylhydantoin leads to decreased activity of methylene tetrahydrofolate reductase and an increased rate of oxidation of formyl tetrahydrofolate (increased oxidation of formate and histidine), with a fall in methylene- and methyl-tetrahydrofolate - the reverse of the effect of the methyl folate trap (Billings, 1984a, 1984b). [Pg.313]

In experimental animals and with isolated tissue preparations and organ cultures, the test can be refined by measuring the production of G02 from [ C]histidine in the presence and absence of added methionine. If the impairment of histidine metabolism is the result of primary folate deficiency, the addition of methionine wUl have no effect. By contrast, if the problem is trapping of folate as methyl-tetrahydrofolate, the addition of methionine will restore normal histidine oxidation as a result of restoring the inhibition of methylene-tetrahydrofolate reductase by S-adenosylmethionine and restoring the activity of 10-formyl-tetrahydrofolate dehydrogenase, thus permitting more normal folate metabolism (Section 10.3.4.1). [Pg.317]

Serine Hydroxymethyltransferase Serinehydroxymethyltrans-ferase is a pyridoxed phosphate-dependent aldolase that catalyzes the cleavage of serine to glycine and methylene-tetrahydrofolate (as shown in Figure 10.5). Serine is the major source of one-carbon substituted folates for biosynthetic reactions. At times of increeised cell proliferation, the activities of serine hydroxymethyltransferase emd the enzymes of the serine biosynthetic pathway cue increased. The other product of the reaction, glycine, is also required in increased cimounts under these conditions (for de novo synthesis of purines). [Pg.279]

The possible relationship of the methane fermentation with the more conventional examples of one-carbon metabolism as catalyzed by folate and vitamin B12 cofactors has been long apparent. 5-Methyl tetrahydro-folate, 5,10-methylene tetrahydrofolate, and methyl vitamin B12 are converted to methane by cell-free extracts of M. barkeri 32) and M. omeli-anskii (33). The involvement of vitamin B12 is further implicated by its high cellular level in methane bacteria and by the isolation of B12-containing proteins in extracts of M. barkeri 30) which stimulate methane evolution from methyl vitamin B12. The components and pathways that can be demonstrated in cell-free M. barkeri extracts 32) are listed below. [Pg.7]

Methylation of homocysteine by 5-methyltetrahydrofolate-homocysteine methyl reductase depends on an adequate supply of 5-methyltetrahydrofoIate. The unmethylated folate is recycled in a cobalamin-dependent pathway, by remethylation to 5,10-methylene-tetrahydrofolate, and subsequent reduction to 5-methyltetrahydrofolate. The transferase enzyme, also named 5,10-methyltretrahydrofolate reductase catalyzes the whole cycle [3,91]. S-adenosylmethionine and 5-methyltetrahydrofolate are the most important methyl unit donors in biological system. S-adenosylmethionine is reported to regulate methylation and transsulfuration pathways in the homocysteine metabolism [3,91]. [Pg.145]

Synthesis of thymidyiate requires uridine nucleotide to be converted to the deoxy form. The substrate for Thymidyiate Synthetase is dUMP, the ] J5 jsjio. methylene-tetrahydrofolate (CH3-THF) is the "methyl" donor. This form of folate derives its carbon from serine ... [Pg.385]


See other pages where Folate methylene tetrahydrofolate is mentioned: [Pg.414]    [Pg.135]    [Pg.55]    [Pg.226]    [Pg.279]    [Pg.283]    [Pg.285]    [Pg.285]    [Pg.292]    [Pg.294]    [Pg.314]    [Pg.318]    [Pg.283]    [Pg.285]    [Pg.285]    [Pg.294]    [Pg.314]    [Pg.318]    [Pg.426]   
See also in sourсe #XX -- [ Pg.388 ]




SEARCH



Folate methylene-tetrahydrofolate reductase

Folate tetrahydrofolate

Methylene tetrahydrofolate

Tetrahydrofolate

Tetrahydrofolates

© 2024 chempedia.info