Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorine-containing polymers tetrafluoroethylene-hexafluoropropylene

Fluorinated polymers, especially polytetrafluoroethylene (PTFE) and copolymers of tetrafluoroethylene (TFE) with hexafluoropropylene (HFP) and perfluorinated alkyl vinyl ethers (PFAVE) as well as other fluorine-containing polymers are well known as materials with unique inertness. However, fluorinated polymers with functional groups are of much more interest because they combine the merits of pefluorinated materials and functional polymers (the terms functional monomer/ polymer will be used in this chapter to mean monomer/polymer containing functional groups, respectively). Such materials can be used, e.g., as ion exchange membranes for chlorine-alkali and fuel cells, gas separation membranes, solid polymeric superacid catalysts and polymeric reagents for various organic reactions, and chemical sensors. Of course, fully fluorinated materials are exceptionally inert, but at the same time are the most complicated to produce. [Pg.91]

The processability of fluorine-containing polymers is improved by replacement of one or more of the fluorine atoms. Replacing one of the eight fluorine atoms with a trifluoromethyl group gives a product called FEP or Viton, actually a copolymer of tetrafluoroethylene and hexafluoropropylene (Equation 6.53). Polytrifluoromonochloroethylene (PCTFE, Kel F) (Equation 6.54), in which one fluorine atom has been replaced by a chlorine atom, has a less regular structure and is thus more easily processed. Poly(vinylidene fluoride) (PVDF, Kynar) (Equation 6.55) is also more easily processable but less resistant to solvents and corrosives. [Pg.192]

The volume of commercial fluorine containing polymers is not large when compared with other polymers, such as poly(vinyl chloride). Fluoropolymers, however, are required in many important applications. The main monomers are tetrafluoroethylene, trifluorochloroethylene, vinyl fluoride, vinylidine fluoride, and hexafluoropropylene. [Pg.261]

The inability to process PTFE by conventional thermoplastics techniques has nevertheless led to an extensive search for a melt-processable polymer but with similar chemical, electrical, non-stick and low-friction properties. This has resulted in several useful materials being marketed, including tetrafluoro-ethylene-hexafluoropropylene copolymer, poly(vinylidene fluoride) (Figure 13.1(d)), and, most promisingly, the copolymer of tetrafluoroethylene and perfluoropropyl vinyl ether. Other fluorine-containing plastics include poly(vinyl fluoride) and polymers and copolymers based on CTFE. [Pg.363]

Copolymers of tetrafluoroethylene were developed in attempts to provide materials with the general properties of PTFE and the melt process-ability of the more conventional thermoplastics. Two such copolymers are tetrafluoroethylene-hexafluoropropylene (TFE-HFP) copolymers (Teflon FEP resins by Du Pont FEP stands for fluorinated ethylene propylene) with a melting point of 290°C and tetrafluoroethylene-ethylene (ETFE) copolymers (Tefzel by Du Pont) with a melting point of 270°C. These products are melt processable. A number of other fluorine containing melt processable polymers have been introduced. [Pg.408]

Most of the other fluorine-containing monomers such as trifluoroethylene, hexafluoropropylene, and pentafluoropropylene are used only for copolymerization with vinyl fluoride, vinylidene fluoride, and tetrafluoroethylene [506,521,535,559-562]. Those copolymers, after a convenient vulcanization procedure using peroxides, diisocyanates, or amines, can be applied as fluorocarbon elastomers [564]. Due to the fluorine content, they have high chemical resistance and often a broad temperature range for application [612]. Polymers of interest are the vinylidenefluoride/hexafluoropropylene copolymer and the... [Pg.218]

In this entry, fluoropolymer means a polymer that consists of partially or fully fluorinated olefinic monomers, such as vinylidene fluoride (CH2=CF2) and tetrafluor-oethylene (CF2=CF2). Commercial fluoropolymers include homopolymers and copolymers. Homopolymers contain 99wt.% or more one monomer and lwt.% or less of another monomer according to the convention by American Society for Testing Materials. Copolymers contain 1 wt.% or more of one or more comonomers. The major commercial fluoropolymers are based on tetrafluoroethylene, vinylidene fluoride, and to a lesser extent chlorotrifluoroethylene. Examples of comonomers include perfluoromethyl vinyl ether (PMVE), perfluoroethyl vinyl ether (PEVE), perfluoro-propyl vinyl ether (PPVE), hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE), and perfluorobutyl ethylene (PFBE). [Pg.1031]

The commercial production of polymers containing fluorine is very small compared to the output of many other synthetic polymers. Nevertheless, several fluoropolymers are used in various important specialized applications. The principal commercial fluoropolymers at the present time are the homopolymers of tetrafluoroethylene (I), chlorotrifluoroethylene (II), vinyl fluoride (III) and vinylidene fluoride (IV) and vinylidene fluoride-chlorotrifluoroethylene, vinyli-dene fluoride-hexafluoropropylene (V) and tetrafluoroethylene-hexafluoropro-pylene copolymers. These materials, together with a few other fluoropolymers of interest, form the contents of this chapter. [Pg.137]


See other pages where Fluorine-containing polymers tetrafluoroethylene-hexafluoropropylene is mentioned: [Pg.16]    [Pg.423]    [Pg.1243]    [Pg.195]    [Pg.195]    [Pg.74]    [Pg.195]    [Pg.140]    [Pg.193]    [Pg.74]    [Pg.67]   


SEARCH



4- fluorine containing

Containers fluorine

Fluorinated containers

Fluorinated polymers

Hexafluoropropylene

Tetrafluoroethylene

Tetrafluoroethylene-hexafluoropropylene

© 2024 chempedia.info