Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluoranthene Compound

The limits of lifetime detection and resolution in on-the-flight fluorescence lifetime detection in hplc were evaluated for simple, binary systems of polycycHc hydrocarbons (70). Peak homogeneity owing to coelution was clearly indicated for two compounds having fluorescence lifetime ratios as small as 1.2 and the individual peaks could be recovered using predeterrnined lifetimes of the compounds. Limits of lifetime detection were deterrnined to be 6 and 0.3 pmol for benzo[b]fluoranthene and benzo[k]fluoranthene, respectively. [Pg.245]

BCR Analytical Approach for the Certification of PAHs in Natural Matrix CRMs Prior to the certification analyses for the CRM, each participating laboratory has to prepare standard solutions of the analytes to be determined from certified reference compounds (purity >99.0 %) to calibrate their instruments for response and response linearity (multiple point calibration), detection limit, and reproducibility. In the case of PAH measurements, reference compounds of certified purity are used as internal standards, which are not present at a detectable concentration in the matrix to be analyzed (e.g. indeno[i,2,3-cd]fluoranthene (CRM 267), 5-methylchrysene (CRM 081R), benzo[f ]chry-sene (CRM 046), picene (CRM 168), and/or phenanthrene-dio). [Pg.99]

Polycyclic (also called polynuclear) aromatic hydrocarbons (PAHs) are composed of multiple rings connected by shared carbon atoms (i.e., separate rings are combined by sharing two carbon atoms). All these compounds are pure hydrocarbons except for the two benzo-fluoranthenes, polychlorinated biphenyls (PCBs), and 2-chloronaphthalene. Moore and Ramamoorthy110 review the behavior of PAHs in natural waters. [Pg.824]

Fig. 5 Main contamination sources identified by PCA for sediments, fish, and suface water in the Ebro River basin, and explained variances for each principal component. Variable identification. Organic compounds in sediments 1, summatory of hexachlorocyclohexanes (HCHs) 2, summa-tory of DDTs (DDTs) 3, hexachlorobenzene (HCB) 4, hexachlorobutadiene (HCBu) 5, summatory of trichlorobenzenes (TCBs) 6, naphthalene 7, fluoranthene 8, benzo(a)pyrene 9, benzo(b) fluoranthene 10, benzo(g,h,i)perylene 11, benzo(k)fluoranthene 12, indene(l,2,3-cd)pyrene. Organic compounds in fish 1, hexachlorobenzene (HCB) 2, summatory of hexachlorocyclohexanes (HCHs) 3, o,p-DDD 4, o,p-DDE 5, o,p-DDT 6, p,p-DDD 7, />,/>DDE 8, />,/>DDT 9, summatory of DDTs (DDTs) 10, summatory of trichlorobenzenes (TCBs) 11, hexachlorobutadiene (HCBu) 12, fish length. Physico-chemical parameters in water 1, alkalinity 2, chlorides 3, cyanides 4, total coliforms 5, conductivity at 20°C 6, biological oxygen demand 7, chemical oxygen demand 8, fluorides 9, suspended matter 10, total ammonium 11, nitrates 12, dissolved oxygen 13, phosphates 14, sulfates 15, water temperature 16, air temperature... Fig. 5 Main contamination sources identified by PCA for sediments, fish, and suface water in the Ebro River basin, and explained variances for each principal component. Variable identification. Organic compounds in sediments 1, summatory of hexachlorocyclohexanes (HCHs) 2, summa-tory of DDTs (DDTs) 3, hexachlorobenzene (HCB) 4, hexachlorobutadiene (HCBu) 5, summatory of trichlorobenzenes (TCBs) 6, naphthalene 7, fluoranthene 8, benzo(a)pyrene 9, benzo(b) fluoranthene 10, benzo(g,h,i)perylene 11, benzo(k)fluoranthene 12, indene(l,2,3-cd)pyrene. Organic compounds in fish 1, hexachlorobenzene (HCB) 2, summatory of hexachlorocyclohexanes (HCHs) 3, o,p-DDD 4, o,p-DDE 5, o,p-DDT 6, p,p-DDD 7, />,/>DDE 8, />,/>DDT 9, summatory of DDTs (DDTs) 10, summatory of trichlorobenzenes (TCBs) 11, hexachlorobutadiene (HCBu) 12, fish length. Physico-chemical parameters in water 1, alkalinity 2, chlorides 3, cyanides 4, total coliforms 5, conductivity at 20°C 6, biological oxygen demand 7, chemical oxygen demand 8, fluorides 9, suspended matter 10, total ammonium 11, nitrates 12, dissolved oxygen 13, phosphates 14, sulfates 15, water temperature 16, air temperature...
Finally, three additional individual data matrices were obtained for soil (so1 so2, and so3), in this case with the same number of samples (rows) for each of them. A new soil data matrix (SO) was obtained after individual matrix concatenation containing 36 samples in total (12 samples analyzed in 3 sampling campaigns) (see Fig. 7). Fifteen variables (all of them detected in SE as well) were measured in every sample PAHs (acenaphtylene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, indeno (l,2,3-cd)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene), an organophosphate compound (tributylphosphate), and an OC (4,4 -DDE). [Pg.355]

The numbering and lettering system for several PAHs is also given. Compounds are (1) naphthalene, (2) fluorene, (3) anthracene, (4) phenanthrene, (5) aceanthrylene, (6) benzo[a]-fluorene, (7) benzo[a]fluorene, (8) benzo[a]-fluorene, (9) fluoranthene, (10) naphthacene, (11) pyrene, (12) benzofluoranthene, (13) benzo[g,/r,fluoranthene, (14) perylene, (15) benzo[e]pyrene, (16) benzo[g,/),/]perylene, (17) anthanthrene, and (18) coronene. [Pg.1344]

Willumsen and Karlson [125] screened 57 PAH-degrading bacteria isolated from PAH-contaminated soil for the production of biosurfactant compounds. The majority of the strains isolated on phenanthrene, pyrene, and fluoranthene were better emulsifiers than surface-tension reducers, and the stability of the... [Pg.428]

Fig. 5a-c. A typical distribution of polycyclic aromatic hydrocarbons in a atmospheric fallout sample, Alexandria City - Egypt b bottom incineration ash leachate of municipal solid waste - USA c hydrothermal petroleum, Escanaba Trough, NE Pacific Ocean. PAH Compound identifications N = naphthalene, MN = methylnaphthalene, DMN = dimethylnaphthalenes, P = phenanthrene, MP = methylphenanthrene, Fl = fluoranthene, Py = pyrene, BaAN = benzol anthracene, DH-Py = dihydropyrene, 2,3-BF = 2,3-benzofluorene, BFL = benzo[fc,/c]fluoranthene, BeP = benzo[e]pyrene, BaP = benzo[a]pyrene, Per = perylene, Cx-228 = methyl-228 series, Indeno = indeno[ l,2,3-c,d]pyrene, DBAN = dibenz[a,/z]anthracene, BPer = benzo[g,/z,z] perylene, AAN = anthanthrene, DBTH = dibenzothiophene, Cor = coronene, DBP = dibenzo [a,e]pyrene, DBPer = dibenzo [g,h,i] perylene... [Pg.18]

Alkyl fluoranthenes/pyrenes (Fig. 8) and the alkylated m/z 228 and 252 series (Fig. 9) are observed mainly from incomplete combustion processes of petroleum and coal. Compound identifications on the figures are summarized in Table 2 with names, compositions, and molecular weights. [Pg.23]

Fig. 12. Procedure for analyzing and determining the TU of the eighth PAH compound in mixture 8-C1 (i.e., TU8 for fluoranthene, Table 9) that would induce 50% growth inhibition for the fresh water alga Selenastrum capricornutum... Fig. 12. Procedure for analyzing and determining the TU of the eighth PAH compound in mixture 8-C1 (i.e., TU8 for fluoranthene, Table 9) that would induce 50% growth inhibition for the fresh water alga Selenastrum capricornutum...
A gas chromatography-flame ionization detector system can be nsed for the separation and detection of nonpolar organic componnds. Semivolatile constitnents are among the analytes that can readily be resolved and detected nsing the system. If a packed column is used, four pairs of compounds may not be resolved adequately and are reported as a quantitative sum anthracene and phenanthrene, chrysene and benzo[a]anthracene, benzo[/ ]fluoranthene and benzo[/ ]fluoranthene, and dibenzo[a,/i]anthracene and indeno[l,2,3-cd]pyrene. This issue can be resolved through the use of a capillary column in place of a packed column. [Pg.203]

Schauer et al. (2001) measured organic compound emission rates for volatile organic compounds, gas-phase semi-volatile organic compounds, and particle phase organic compounds from the residential (fireplace) combustion of pine, oak, and eucalyptus. The particle-phase emission rates of benzo[6]fluoranthene were 0.790 mg/kg of pine burned, 0.400 mg/kg of oak burned, and 0.327 mg/kg of eucalyptus burned. [Pg.137]

Pyrolysis of bis(2-ethylhexyl) phthalate in the presence of polyvinyl chloride at 600 °C produced the following compounds methylindene, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, biphenyl, dimethylnaphthalene, acenaphthene, fluorene, methylacenaphthene, methylfluorene, phenanthrene, anthracene, methylphenanthrene, methylanthracene, methylpyrene or fluoranthene, and 17 unidentified compounds (Bove and Dalven, 1984). [Pg.184]

Seventeen priority pollutant compounds can be classified as polynuclear aromatics (PNA). These compounds consist of two or more benzene rings that share a pair of carbon atoms. They are all derived from coal tar, with naphthalene being the largest constituent. Naphthalene derivatives such as alpha-naphthylamine and alpha-naphthol are used in some pesticide processes therefore, naphthalene is by far the most prevalent PNA priority pollutant in the industry. Acenaphthene, anthracene, fluorene, fluoranthene, and phenathrene are found as raw material impurities. Acenaphthene is found in one pesticide process as a raw material. The remaining ten PNAs are not suspected to be present in pesticide processes. [Pg.515]

In the solid-state structure of dilithiated fluoranthene (235), generated from 234 in dimethoxyethane at room temperature by Bock and coworkers (Scheme 82), lithium-DME units are capping the naphthalene moiety from both sides of the plane alternatingly (compound 235 forms a coordination polymer in the solid state). The metallic lithium, used for the reaction, was activated by ultrasonic irradiation. Moreover, several structures of related polysodium compounds were also characterized in the solid state . [Pg.988]

Polycyclic Aromatic Hydrocarbons with Two or Three Fused Rings Polycyclic Aromatic Hydrocarbons PAH PNA POM Polycyclic Hydrocarbons, Nonalternant Compounds with Four Fused Rings Fluoranthene... [Pg.7]

Four-Ring Fused Nonaltemant Hydrocarbons Polycyclic Hydrocarbons, Nonalternant Compounds with Five Fused Rings Benzo(i>)fluoranthene Benzo(A )fluoranthene... [Pg.7]

The technology is a slurry-phase biological treatment that, according to the vendor, has successfully treated soil, sludge, groundwater, and process water contaminated with volatile and semivolatile organic compounds (VOCs and SVOCs) such as toluene, naphthalene, fluoranthene, pentachlorophenol, and creosote. [Pg.422]

Benzo(a)anthracene under Polycyclic Aromatic Hydrocarbons, Four-Ring Compounds Benzo(a)pyrene under Polycyclic Aromatic Hydrocarbons, Five-Ring Compounds Benzo(fc)fluoranthene under Polycyclic Hydrocarbons, Nonaltemant Compounds with Five Fused Rings... [Pg.1265]


See other pages where Fluoranthene Compound is mentioned: [Pg.102]    [Pg.102]    [Pg.251]    [Pg.343]    [Pg.344]    [Pg.321]    [Pg.189]    [Pg.527]    [Pg.555]    [Pg.604]    [Pg.610]    [Pg.12]    [Pg.44]    [Pg.45]    [Pg.200]    [Pg.40]    [Pg.256]    [Pg.146]    [Pg.347]    [Pg.355]    [Pg.1345]    [Pg.1346]    [Pg.1381]    [Pg.1384]    [Pg.1388]    [Pg.133]    [Pg.16]    [Pg.236]    [Pg.550]    [Pg.296]   
See also in sourсe #XX -- [ Pg.1295 ]




SEARCH



Fluoranthen

© 2024 chempedia.info