Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluctuation theory correlation function

Key words Linear-response theory - Correlation function - Fluctuation-dissipation theorem - Reaction rates... [Pg.76]

Radiation probes such as neutrons, x-rays and visible light are used to see the structure of physical systems tlirough elastic scattering experunents. Inelastic scattering experiments measure both the structural and dynamical correlations that exist in a physical system. For a system which is in thennodynamic equilibrium, the molecular dynamics create spatio-temporal correlations which are the manifestation of themial fluctuations around the equilibrium state. For a condensed phase system, dynamical correlations are intimately linked to its structure. For systems in equilibrium, linear response tiieory is an appropriate framework to use to inquire on the spatio-temporal correlations resulting from thennodynamic fluctuations. Appropriate response and correlation functions emerge naturally in this framework, and the role of theory is to understand these correlation fiinctions from first principles. This is the subject of section A3.3.2. [Pg.716]

For liquids, few simple and widely accepted theories have been developed. The shear viscosity can be related to the way in which spontaneous fluctuations relax in an equilibrium system, leading to the time correlation function expression " " ... [Pg.180]

The present theory can be placed in some sort of perspective by dividing the nonequilibrium field into thermodynamics and statistical mechanics. As will become clearer later, the division between the two is fuzzy, but for the present purposes nonequilibrium thermodynamics will be considered that phenomenological theory that takes the existence of the transport coefficients and laws as axiomatic. Nonequilibrium statistical mechanics will be taken to be that field that deals with molecular-level (i.e., phase space) quantities such as probabilities and time correlation functions. The probability, fluctuations, and evolution of macrostates belong to the overlap of the two fields. [Pg.4]

As indicated, the power law approximations to the fS-correlator described above are only valid asymptotically for a —> 0, but corrections to these predictions have been worked out.102,103 More important, however, is the assumption of the idealized MCT that density fluctuations are the only slow variables. This assumption breaks down close to Tc. The MCT has been augmented by coupling to mass currents, which are sometimes termed inclusion of hopping processes, but the extension of the theory to temperatures below Tc or even down to Tg has not yet been successful.101 Also, the theory is often not applied to experimental density fluctuations directly (observed by neutron scattering) but instead to dielectric relaxation or to NMR experiments. These latter techniques probe reorientational motion of anisotropic molecules, whereas the MCT equation describes a scalar quantity. Using MCT results to compare with dielectric or NMR experiments thus forces one to assume a direct coupling of orientational correlations with density fluctuations exists. The different orientational correlation functions and the question to what extent they directly couple to the density fluctuations have been considered in extensions to the standard MCT picture.104-108... [Pg.29]

A chemical relaxation technique that measures the magnitude and time dependence of fluctuations in the concentrations of reactants. If a system is at thermodynamic equilibrium, individual reactant and product molecules within a volume element will undergo excursions from the homogeneous concentration behavior expected on the basis of exactly matching forward and reverse reaction rates. The magnitudes of such excursions, their frequency of occurrence, and the rates of their dissipation are rich sources of dynamic information on the underlying chemical and physical processes. The experimental techniques and theory used in concentration correlation analysis provide rate constants, molecular transport coefficients, and equilibrium constants. Magde" has provided a particularly lucid description of concentration correlation analysis. See Correlation Function... [Pg.164]

Andersen, H. C. Diagrammatic Formulation of the Kinetic Theory of Fluctuations in Equilibrium Classical Fluids. III. Cluster Analysis of the Renormalized Interactions and a Second Diagrammatic Representation of the Correlation Functions. J. Phys. Chem. B 2003, 107, 10234-10242. [Pg.667]

According to standard NMR theory, the spin-lattice relaxation is proportional to the spectral density of the relevant spin Hamiltonian fluctuations at the transition frequencies coi. The spectral density is given by the Fourier transform of the auto-correlation fimction of the single particle fluctuations. For an exponentially decaying auto-correlation function with auto-correlation time Tc, the well-known formula for the spectral density reads as ... [Pg.135]

From the above linear theory the time-correlation function for the thermal fluctuation < ,(1) decays exponentially with the decay rate rth(q) given by... [Pg.100]

The only problem necessary for developing the condensation theory is to add to the above-mentioned equation of the state the equation defining the function x(r)- Unfortunately, it turns out that the exact equation for the joint correlation function, derived by means of basic equations of statistical physics, contains f/iree-particle correlation function x 3), which relates the correlations of the density fluctuations in three points of the reaction volume. The equation for this three-particle correlations contains four-particle correlation functions and so on, and so on [9], This situation is quite understandable, since the use of the joint correlation functions only for description of the fluctuation spectrum of a system is obviously not complete. At the same time, it is quite natural to take into account the density fluctuations in some approximate way, e.g., treating correlation functions in a spirit of the mean-field theory (i.e., assuming, in particular, that three-particle correlations could be expanded in two-particle ones). [Pg.41]

However, a question arises - could similar approach be applied to chemical reactions At the first stage the general principles of the system s description in terms of the fundamental kinetic equation should be formulated, which incorporates not only macroscopic variables - particle densities, but also their fluctuational characteristics - the correlation functions. A simplified treatment of the fluctuation spectrum, done at the second stage and restricted to the joint correlation functions, leads to the closed set of non-linear integro-differential equations for the order parameter n and the set of joint functions x(r, t). To a full extent such an approach has been realized for the first time by the authors of this book starting from [28], Following an analogy with the gas-liquid systems, we would like to stress that treatment of chemical reactions do not copy that for the condensed state in statistics. The basic equations of these two theories differ considerably in their form and particular techniques used for simplified treatment of the fluctuation spectrum as a rule could not be transferred from one theory to another. [Pg.42]

The said allows us to understand the importance of the kinetic approach developed for the first time by Waite and Leibfried [21, 22]. In essence, as is seen from Fig. 1.15 and Fig. 1.26, their approach to the simplest A + B —0 reaction does not differ from the Smoluchowski one However, coincidence of the two mathematical formalisms in this particular case does not mean that theories are basically identical. Indeed, the Waite-Leibfried equations are derived as some approximation of the exact kinetic equations due to a simplified treatment of the fluctuational spectrum a complete set of the joint correlation functions x(rJ) for kinds of particles is replaced by the only function xab (a t) describing the correlation of chemically reacting dissimilar particles. Second, the equation defining the correlation function X = Xab(aO is linearized in the function x(rJ)- This is analogous to the... [Pg.43]

If the random force has a delta function correlation function then K(t) is a delta function and the classical Langevin theory results. The next obvious approximation to make is that F is a Gaussian-Markov process. Then is exponential by Doob s theorem and K t) is an exponential. The velocity autocorrelation function can then be found. This approximation will be discussed at length in a subsequent section. The main thing to note here is that the second fluctuation dissipation theorem provides an intuitive understanding of the memory function. ... [Pg.45]

According to RG theory [11, 19, 20], universality rests on the spatial dimensionality D of the systems, the dimensionality n of the order parameter (here n = 1), and the short-range nature of the interaction potential 0(r). In D = 3, short-range means that 0(r) decays as r p with p>D + 2 — tj = 4.97 [21], where rj = 0.033 is the exponent of the correlation function g(r) of the critical fluctuations [22] (cf. Table I). Then, the critical exponents map onto those of the Ising spin-1/2 model, which are known from RG calculations [23], series expansions [11, 12, 24] and simulations [25, 26]. For insulating fluids with a leading term of liquid metals [27-29] the experimental verification of Ising-like criticality is unquestionable. [Pg.4]

Measurements of static light or neutron scattering and of the turbidity of liquid mixtures provide information on the osmotic compressibility x and the correlation length of the critical fluctuations and, thus, on the exponents y and v. Owing to the exponent equality y = v(2 — ti) a 2v, data about y and v are essentially equivalent. In the classical case, y = 2v holds exactly. Dynamic light scattering yields the time correlation function of the concentration fluctuations which decays as exp(—Dk t), where k is the wave vector and D is the diffusion coefficient. Kawasaki s theory [103] then allows us to extract the correlation length, and hence the exponent v. [Pg.17]

Let us first recall that standard DH theory presumes constant ion density, so that the pair correlation function cannot say anything about density fluctuations. In contrast, simple DH theory describes charge fluctuations via the well-known screening decay as exp(—rDr). Note, however, that this result does not satisfy a rigorous condition for the second moment of the charge-charge correlation function first derived by Stillinger and Lovett (SL) [39] ... [Pg.44]

A crucial assumption for such a scenario is that the charge-charge correlation function ha(r) decays as exp (—IV), where the inverse charge-charge correlation length T = 1/ does not vanish at the critical point. At low ion densities, where T —> T0, this has meanwhile been proved for DH theory. Then, at the critical point, only the density fluctuations become... [Pg.51]


See other pages where Fluctuation theory correlation function is mentioned: [Pg.438]    [Pg.56]    [Pg.227]    [Pg.527]    [Pg.295]    [Pg.110]    [Pg.63]    [Pg.165]    [Pg.541]    [Pg.30]    [Pg.32]    [Pg.42]    [Pg.45]    [Pg.251]    [Pg.389]    [Pg.82]    [Pg.270]    [Pg.35]    [Pg.45]    [Pg.45]    [Pg.46]    [Pg.288]    [Pg.110]    [Pg.85]    [Pg.80]    [Pg.267]    [Pg.314]    [Pg.288]    [Pg.340]    [Pg.672]    [Pg.215]    [Pg.411]    [Pg.584]   
See also in sourсe #XX -- [ Pg.249 ]




SEARCH



Fluctuation theory

Fluctuations correlation

© 2024 chempedia.info