Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flotation in the Presence of Sodium Sulphide

Abstract The sodium sulphide-induced collectorless flotation of several minerals are first introduced in this chapter. The results obtained are that sodium sulphide-induced collectorless flotation of sulphide minerals is strong for pyrite while galena, jamesonite and chalcopyrite have no sodium sulphide-induced collectorless flotability. And the nature of hydrophobic entity is then determined through J h-pH diagram and cyclic voltammogram, which is element sulphur. It is further proved widi the results of surface analysis and sulphur-extract. In the end, the self-induced and sodium sulphide-induced collectorless flotations are compared. And it is found that the order is just reverse in sodium sulphide-induced flotation to the one in self-induced collectorless flotation. [Pg.53]

Keywords sodium sulphide-induced collectorless flotation h-pH diagram [Pg.53]


Chapter 3 Collectorless Flotation in the Presence of Sodium Sulphide... [Pg.53]

The flotation results of three sulphide minerals in the presence of sodium sulphide are presented in Fig. 3.1 as recovery-concentration curves. In contrast to self-induced collectorless flotation, pyrite and arsenopyrite are strongly floatable while chalcopyrite and galena are weakly floatable in the presence of sodium sulphide. [Pg.53]

The influence of copper ion on the flotation of zinc-iron sulphide minerals in the presence of depressant with butyl xanthate l.Ox 10 mol/L as a collector is presented in Fig. 6.11 to Fig. 6.14. It can be seen from Fig. 6.11 and Fig. 6.12 that in the presence of 120 mg/L 2-hydroxyl ethyl dithio carbonic sodium (GXl) and 2,3 dihydroxyl propyl dithio carbonic sodium (GX2), marmatite is activated by copper ion and exhibits very good flotation with a recovery above 90% in the pH range of 4-8. The flotation of arsenopyrite and pyrrhotite is poor with a... [Pg.152]

Figure 6.13 and Fig. 6.14 demonstrate the flotation results of zinc-iron sulphide minerals with l.Ox lO mel/L butyl xanthate as a collector in the presence of (1-carbonic sodium-2-hydroxyl) sodium propronate dithio carbonic sodium (TX3) or (1-carbonic sodium-2-sodium acetate) sodium propronate dithio carbonic... [Pg.153]

From the Eqs. (3-1) to (3-13), the h-pH diagram of sodium sulphide solution is constructed with element sulphxir as metastable phase considering the presence of barrier (about 300kJ/mol) or overpotential (about 3.114 mV) of sulphide oxidation to sulphate and shown in Fig. 3.7. It is obvious that the lower limit of potential of sodium sulphide-induced collectorless flotation of pyrite, pyrrhotite and arsenopyrite at various pH agree well with the potential defined respectively by reactions of Eq. (3-9) producing elemental sulphur. The initial potential... [Pg.58]


See other pages where Flotation in the Presence of Sodium Sulphide is mentioned: [Pg.56]    [Pg.57]    [Pg.126]    [Pg.157]    [Pg.73]   


SEARCH



Sodium sulphide

© 2024 chempedia.info