Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural convection, laminar flat plate

In Chapter 5, we learned the foundations of convection. Integrating the governing equations for laminar boundary layers, we obtained expressions for the heat transfer associated with forced convection over a horizontal plate and natural convection about a vertical plate. We also found analytically, as well as by the analogy between heat and momentum, that the thermal and momentum characteristics of laminar flow over a flat plate are related by... [Pg.288]

E. K. Levy, P. A. Eichen, W. R. Cintani, and R. R. Shaw, Optimum Plate Spacings for Laminar Natural Convection Heat Transfer From Parallel Vertical Isothermal Flat Plates Experimental Verification, J. Heat Transfer (97) 474-476,1975. [Pg.296]

C. Laminar, local, flat plate, natural convection vertical plate... [Pg.605]

I. Turbulent, local flat plate, natural convection, vertical plate Turbulent, average, flat plate, natural convection, vertical plate Nsk. = — = 0.0299Wg=Ws = D x(l + 0.494W ) )- = 0.0249Wg=W2f X (1 + 0.494WE )- [S] Low solute concentration and low transfer rates. Use arithmetic concentration difference. Ncr > 10 " Assumes laminar boundary layer is small fraction of total. D [151] p. 225... [Pg.606]

C. Laminar, local, flat plate, natural convection vertical plate (Va., = = 0.508 Ni (0.952 + [T] Low MT rates. Dilute systems, Ap/p 1. NqtNsc < 108. Use with arithmetic concentration difference, x = length from plate bottom. [141] p. 120... [Pg.63]

Consider a vertical hot flat plate immersed in a quiescent fluid body. We assume the natural convection flow to be steady, laminar, and two-dimensional, and the fluid to be Newtonian with constant properties, including density, with one exception the density difference p — is to be considered since it is this density difference between the inside and the outside of the boundary layer that gives rise to buoyancy force and sustains flow. (This is known as the Boussines.q approximation.) We take the upward direction along the plate to be X, and the direction normal to surface to be y, as shown in Fig. 9-6. Therefore, gravelly acts in the —.t-direclion. Noting that the flow is steady and two-dimensional, the.t- andy-compoijents of velocity within boundary layer are II - u(x, y) and v — t/(.Y, y), respectively. [Pg.524]

An important heat-transfer system occurring in process engineering is that in which heat is being transferred from a hot vertical plate to a gas or liquid adjacent to it by natural convection. The fluid is not moving by forced convection but only by natural or free convection. In Fig. 4.7-1 the vertical flat plate is heated and the free-convection boundary layer is formed. The velocity profile differs from that in a forced-convection system in that the velocity at the wall is zero and also is zero at the other edge of the boundary layer since the free-stream velocity is zero for natural convection. The boundary layer initially is laminar as shown, but at some distance from the leading edge it starts to become turbulent. The wall temperature is T K and the bulk temperature T. ... [Pg.253]


See other pages where Natural convection, laminar flat plate is mentioned: [Pg.464]   
See also in sourсe #XX -- [ Pg.354 , Pg.355 , Pg.356 , Pg.357 , Pg.358 , Pg.359 , Pg.360 , Pg.361 , Pg.362 , Pg.363 , Pg.364 ]




SEARCH



Convection flat plate

Flat plate

Flat plates natural convection

Laminar natural convection

Natural convection

Natural convection plates

© 2024 chempedia.info