Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photolysis, flash, generation

Chiang, Y. Kresge, A. J. Zhu, Y. Flash photolysis generation and study of p-quinone methide in aqueous solution. An estimate of rate and equilibrium constants for heterolysis of the carbon-bromine bond inp-hydroxybenzyl bromide. J. Amer. Chem. Soc. 2002,124, 6349-6356. [Pg.378]

R. A. McClelland, Flash Photolysis Generation and Reactivities of Carbenium Ions and Nitrenium Ions, Tetrahedron 1996, 52, 6823. [Pg.36]

M. Novak and S. Rajagopal, N-Arylnitrenium Ions, Adv. Phys. Org. Chem. 2001,136, 167. R. A. McClelland, Flash Photolysis Generation and Reactivities of Carbenium Ions and Nitrenium Ions, Tetrahedron, 1996, 52, 6823. [Pg.644]

One of the most important teclmiques for the study of gas-phase reactions is flash photolysis [8, ]. A reaction is initiated by absorption of an intense light pulse, originally generated from flash lamps (duration a=lp.s). Nowadays these have frequently been replaced by pulsed laser sources, with the shortest pulses of the order of a few femtoseconds [22, 64]. [Pg.2125]

The flash lamp teclmology first used to photolyse samples has since been superseded by successive generations of increasingly faster pulsed laser teclmologies, leading to a time resolution for optical perturbation metliods tliat now extends to femtoseconds. This time scale approaches tlie ultimate limit on time resolution (At) available to flash photolysis studies, tlie limit imposed by chemical bond energies (AA) tlirough tlie uncertainty principle, AAAt > 2/j. [Pg.2946]

Flash photolysis of a 4-enamino-5-one at 650 °C generated ethylnylamine, which was stable at -196 °C and its IR spectrum was examined. Warming caused tautomerization to N-phenylketenimine (Scheme 66) (80AG743). [Pg.42]

The intermediate diphenylhydroxymethyl radical has been detected after generation by flash photolysis. Photolysis of benzophenone in benzene solution containing potential hydrogen donors results in the formation of two intermediates that are detectable, and their rates of decay have been measured. One intermediate is the PhjCOH radical. It disappears by combination with another radical in a second-order process. A much shorter-lived species disappears with first-order kinetics in the presence of excess amounts of various hydrogen donors. The pseudo-first-order rate constants vary with the structure of the donor with 2,2-diphenylethanol, for example, k = 2 x 10 s . The rate is much less with poorer hydrogen-atom donors. The rapidly reacting intermediate is the triplet excited state of benzophenone. [Pg.755]

The flash photolysis of s-trinitrobenzene (TNB) aerated solns in alcohols generated a transient species with absorption maxima at 430 and 51 Onm (Ref 27). The yield of the transient was a function of oxygen concn, and its rate of formation was viscosity dependent. In deaerated solns, instead of the transient, a brown permanent product, identified as a charge transfer... [Pg.737]

Some of the most important questions one can ask in the study of kinetics concern the rates of reactions of the intermediates. In some cases, values can be obtained by direct experiments. For example, one might generate the intermediate by an independent method capable of producing it much more rapidly than it reacts. Then it can be examined in its own right. Chapter 11 presents methods for doing so, such as flash photolysis and pulse radiolysis. [Pg.103]

Photolytic methods are used to generate atoms, radicals, or other highly reactive molecules and ions for the purpose of studying their chemical reactivity. Along with pulse radiolysis, described in the next section, laser flash photolysis is capable of generating electronically excited molecules in an instant, although there are of course a few chemical reactions that do so at ordinary rates. To illustrate but a fraction of the capabilities, consider the following photochemical processes ... [Pg.264]

There are two possible structures for simple alkyl radicals. They might have sp bonding, in which case the structure would be planar, with the odd electron in ap orbital, or the bonding might be sp, which would make the structure pyramidal and place the odd electron in an sp orbital. The ESR spectra of CHs and other simple alkyl radicals as well as other evidence indicate that these radicals have planar structures.This is in accord with the known loss of optical activity when a free radical is generated at a chiral carbon. In addition, electronic spectra of the CH3 and CD3 radicals (generated by flash photolysis) in the gas phase have definitely established that under these conditions the radicals are planar or near planar. The IR spectra of CH3 trapped in solid argon led to a similar conclusion. " °... [Pg.244]

Further studies were carried out with halocarbene amides 34 and 357 Although again no direct spectroscopic signatures for specifically solvated carbenes were found, compelling evidence for such solvation was obtained with a combination of laser flash photolysis (LFP) with UV-VIS detection via pyridine ylides, TRIR spectroscopy, density functional theory (DFT) calculations, and kinetic simulations. Carbenes 34 and 35 were generated by photolysis of indan-based precursors (Scheme 4.7) and were directly observed by TRIR spectroscopy in Freon-113 at 1635 and 1650 cm , respectively. The addition of small amounts of dioxane or THF significantly retarded the rate of biomolecular reaction with both pyridine and TME in Freon-113. Also, the addition of dioxane increased the observed lifetime of carbene 34 in Freon-113. These are both unprecedented observations. [Pg.200]

Much attention has been devoted to the development of methods to generate quinone methides photochemically,1,19-20 since this provides temporal and spatial control over their formation (and subsequent reaction). In addition, the ability to photogenerate quinone methides enables their study using time-resolved absorption techniques (such as nanosecond laser flash photolysis (LFP)).21 This chapter covers the most important methods for the photogeneration of ortho-, meta-, and para-quinone methides. In addition, spectral and reactivity data are discussed for quinone methides that are characterized by LFP. [Pg.4]

A very interesting technique for radical generation is flash photolysis, which employs a very intense pulse of radiation (visible or u.v.) of very short duration. This produces a very high immediate concentration of radicals, which may be detected—and whose fate may be followed—by spectroscopy through one or more subsequent pulses of lower intensity radiation of suitable wavelength. This is, of course, primarily a technique for the study of radicals rather than for their use in preparative procedures. Radicals may also be generated, in suitable cases, by irradiation of neutral molecules with X-rays or with y-rays radiolysis. [Pg.304]

Flash photolysis has now been applied to a wide range of metal carbonyl species in solution, including Mn2(CO)10 (37), [CpFe(CO)2]2 (38), and [CpMo(CO)3]2 (39). In almost every case, interesting data have emerged, but, as with Cr(CO)5, the structural information is usually minimal. Thus, the radical Mn(CO)5 has been generated in solution by flash photolysis (37), the rate constant for its bimolecular recombination has been measured, but the experiments did not show whether it had Z>3h or Qv symmetry. Some experiments have been unsuccessful. Although the fragment Fe(CO)4 is well known in matrices (15), it has never been... [Pg.282]

Relatively little work has been done on the flash photolysis of gas phase metal carbonyls, partly because of the low volatility of many of the compounds. Early work by Callear (41,42) provided some evidence for Ni(CO)3 generated from Ni(CO)4 in the gas phase (41) and Fe atoms produced from Fe(CO)5 (42). This latter process has even been used as the basis of an Fe atom laser (43). More recently Breckenridge and Sinai (44) studied the flash photolysis of Cr(CO)6. Their results, interpreted largely on the basis of data from matrix isolation experiments, were in broad agreement with Kelly and Bonneau s solution work (JJ). In particular, they found no evidence for loss of more than one CO group [Eqs. (4) and (5)]. [Pg.283]

In both continuous generation and flash photolysis, the intermediate starts to react as soon as it is formed and if it is very reactive (e.g. "naked" Cr(C0)5, Ni(C0)3) it may not be possible to detect. [Pg.37]


See other pages where Photolysis, flash, generation is mentioned: [Pg.1919]    [Pg.413]    [Pg.1919]    [Pg.413]    [Pg.2115]    [Pg.2138]    [Pg.2966]    [Pg.511]    [Pg.512]    [Pg.491]    [Pg.53]    [Pg.130]    [Pg.217]    [Pg.438]    [Pg.71]    [Pg.63]    [Pg.220]    [Pg.130]    [Pg.418]    [Pg.231]    [Pg.94]    [Pg.141]    [Pg.278]    [Pg.298]    [Pg.122]    [Pg.921]    [Pg.37]    [Pg.42]    [Pg.52]    [Pg.533]    [Pg.142]    [Pg.715]    [Pg.724]    [Pg.745]    [Pg.17]   


SEARCH



Flash photolysis

Generation by laser flash photolysis

Laser flash photolysis carbocation generation

© 2024 chempedia.info