Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

First Electrochemical Power Sources

The Volta pile was of extraordinary significance for developments both in the sciences of electricity and electrochemistry, since a new phenomenon, a continuous electric current, hitherto not known, could now be realized. Soon various properties and effects of the electric current were discovered, including many electrochemical processes. In May of 1800, William Nicholson and Sir Anthony Carlisle electrolyzed [Pg.693]

Fundamentals of Electrochemistry, Second Edition, By V. S. Bagotsky Copyright 2006 John Wiley Sons, Inc. [Pg.693]

During the next decades after the appearance of the Volta pile and of different other versions of batteries, fundamental laws of electrodynamics and electromagnetism were formulated based on experiments carried out with electric current supplied by batteries Ampere s law of interaction between electrical currents (1820), Ohm s law of proportionality between current and voltage (1827), the laws of electromagnetic induction (Faraday, 1831), Joule s law of the thermal effect of electric current, and many others. [Pg.694]

The appearance of electrochemical batteries provided an impetus in research into practical applications of electric current. The first prototype of electric telegraph appeared in 1804. In 1838, Jacobi experimented with a battery-driven motorboat on the Neva River not far from St. Petersburg. These achievements led to rapid development of the theory and practice of electrical engineering, and the seventh decade of that century saw the appearance of a revolutionary new power source the electromagnetic generator (Werner von Siemens, 1866), which soon surpassed their predecessors in both electrical and economic parameters. [Pg.694]

For an analysis of the OCV of batteries, the notion of electrode potential was of prime importance. In 1883, Friedrich Wilhelm Ostwald (1853-1932 Nobel prize, 1909) gave a clear description of this notion. At his suggestion, his student Walther Nemst (1864-1941 Nobel prize, 1920) investigated the thermodynamic equilibrium [Pg.694]


Just a few months after the appearance of the Volta pile it was found that the electric current can exert a chemical action. As early as May of 1800, Nicholson and Carlisle carried out water electrolysis. In 1803 the processes of metal electrodeposition were discovered. In 1807 Davy for the first time isolated alkali metals by electrolysis of salt melts. Thus almost simultaneously with the creation of the first electrochemical power source - the "galvanic cell" or "galvanic battery" - many electrochemical processes were discovered and the foundations were laid of the science which to-day we call electrochemistry. [Pg.55]

Electrochemical power sources differ from others, such as thermal power plants, by the fact that the energy conversion occurs without any intermediate steps for example, in the case of thermal power plants fuel is first converted in thermal energy, and finally electric power is produced using generators. In the case of electrochemical power sources this otherwise multistep process is achieved directly in only one step. As a consequence, electrochemical systems show some advantages, such as energy efficiency. [Pg.3]

Carbides were first proposed as anodes for H2 ionization in electrochemical power sources [422], The higher activity of WC with respect to W for H2 evolution was discovered about forty years ago [423], but the first practical proposals for the use of carbides as cathodes are found only recently under the influence of research aimed at the development of more efficient water electrolyzers [424]. More recently, aqueous suspensions of WC have been proposed to catalyze H2 formation in the presence of the reduced form of a redox relay that is continuously generated through a photochemical reaction [425]. [Pg.43]

He started to work at the Chemical Faculty of Sofia University where he became a professor and the head of the Department of Physical Chemistry, in 1947. Kaishev founded the Institute of Physical Chemistry of the Bulgarian Academy of Sciences in 1958, and helped to establish the Central Laboratory of Electrochemical Power Sources [i]. Kaishev started to collaborate with - Stran-ski in Berlin in 1931 [iii] and became his assistant in Sofia in 1933. They laid the fundamentals of the crystal growth theory. They proposed the first kinetic theory of the two-dimensional nucleation and growth. The spiral type growth during electrocrystallization was first observed by Kaishev on silver [iii]. On the history of the creation of the molecular-kinetic theory of crystal growth see [iv]. [Pg.379]

D. Pavlov, G. Papazov, in Electrochemical Power Sources, Proceedings of First Symposium EPS, Dum Techniky, Praha, 1975, p. 49. [Pg.107]

Electrochemical Power Sources Batteries, Fuel Cells, and Supercapacitors, First Edition. Vladimir S. Bagotsky, Alexander M. Skundin, and Yurij M. Volfkovich 2015 John Wiley Sons, Inc. Published 2015 by John Wiley Sons, Inc. [Pg.3]


See other pages where First Electrochemical Power Sources is mentioned: [Pg.693]    [Pg.695]    [Pg.693]    [Pg.695]    [Pg.693]    [Pg.1]    [Pg.8]    [Pg.148]    [Pg.26]    [Pg.38]   


SEARCH



Electrochemical power

Electrochemical power sources

Power sources

© 2024 chempedia.info