Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Finite element method partial differential equation

Abstract The aim of this chapter is to introduce special numerical techniques. The first part covers special finite element techniques which reduce the size of the computational models. In the case of the substructuring technique, internal nodes of parts of a finite element mesh can be condensed out so that they do not contribute to the size of the global stiffiiess matrix. A post computational step allows to determine the unknowns of the condensed nodes. In the case of the submodel technique, the results of a finite element computation based on a coarse mesh are used as input, i.e., boundary conditions, for a refined submodel. The second part of this chapters introduces alternative approximation methods to solve the partial differential equations which describe the problem. The boundary element method is characterized by the fact that the problem is shifted to the boundary of the domain and as a result, the dimensionality of the problem is reduced by one. In the case of the finite difference method, the differential equation and the boundary conditions are represented by finite difference equations. Both methods are introduced based on a simple one-dimensional problem in order to demonstrate the major idea of each method. Furthermore, advantages and disadvantages of each alternative approximation methods are given in the light of the classical finite element simulation. Whenever possible, examples of application of the techniques in the context of adhesive joints are given. [Pg.662]

The underlying Finite Volume Method divides the system geometry into small (linked) partial volumes of the same magnitude analog to the well-known finite elements in FEA (Finite Element Analysis). The differential equations that describe the flow are converted in this way into difference equations (integrals to be summed). These can then be solved as a linear equation system using a high performance Solver. If this calculation is repeated for each time step, the result is a description of the time-dependent transient flow. [Pg.990]

Discretization of the governing equations. In this step, the exact partial differential equations to be solved are replaced by approximate algebraic equations written in terms of the nodal values of the dependent variables. Among the numerous discretization methods, finite difference, finite volume, and finite element methods are the most common. Tlxe finite difference method estimates spatial derivatives in terms of the nodal values and spacing between nodes. The governing equations are then written in terms of... [Pg.673]

A.R. Mitchell and R. Wait, The Finite Element Method in Partial Differential Equations, Wiley, New York, 1977. [Pg.350]

In the finite-difference appntach, the partial differential equation for the conduction of heat in solids is replaced by a set of algebraic equations of temperature differences between discrete points in the slab. Actually, the wall is divided into a number of individual layers, and for each, the energy conserva-tk>n equation is applied. This leads to a set of linear equations, which are explicitly or implicitly solved. This approach allows the calculation of the time evolution of temperatures in the wall, surface temperatures, and heat fluxes. The temporal and spatial resolution can be selected individually, although the computation time increa.ses linearly for high resolutions. The method easily can be expanded to the two- and three-dimensional cases by dividing the wall into individual elements rather than layers. [Pg.1067]

Finite element methods [20,21] have replaced finite difference methods in many fields, especially in the area of partial differential equations. With the finite element approach, the continuum is divided into a number of finite elements that are assumed to be joined by a discrete number of points along their boundaries. A function is chosen to represent the variation of the quantity over each element in terms of the value of the quantity at the boundary points. Therefore a set of simultaneous equations can be obtained that will produce a large, banded matrix. [Pg.91]

Although only approximate analytical solutions to this partial differential equation have been available for x(s,D,r,t), accurate numerical solutions are now possible using finite element methods first introduced by Claverie and coworkers [46] and recently generalized to permit greater efficiency and stabihty [42,43] the algorithm SEDFIT [47] employs this procedure for obtaining the sedimentation coefficient distribution. [Pg.223]

Analytical solution is possible only for first or zero order. Otherwise a numerical solution by finite differences, method of lines or finite elements is required. The analytical solution proceeds by the method of separation of variables which converts the PDE into one ODE with variables separable and the other a Bessel equation. The final solution is an infinite series whose development is quite elaborate and should be sought in books on Fourier series or partial differential equations. [Pg.748]

The nonlinearity of the system of partial differential equations (51) and (52) poses a serious obstacle to finding an analytical solution. A reported analytical solution for the nonlinear problem of diffusion coupled with complexation kinetics was erroneous [12]. Thus, techniques such as the finite element method [53-55] or appropriate change of variables (applicable in some cases of planar diffusion) [56] should be used to find the numerical solution. One particular case of the nonlinear problem where an analytical solution can be given is the steady-state for fully labile complexes (see Section 3.3). However, there is a reasonable assumption for many relevant cases (e.g. for trace elements such as... [Pg.179]

The set of partial differential equations developed for the simultaneous transfer of moisture, hear, and reactive chemicals under saturated/unsaturated soil conditions has been solved by the Galerkin finite element method. The chemical transport equations are formulated in terms of the total analytical concentration of each component species, and can be solved sequentially (Wu and Chieng, 1995). [Pg.219]

Numerical methods such as the finite element method is based on the method of weighted residuals. To illustrate this method, we begin with boundary value partial differential equation (PDE) presented in the form... [Pg.376]

The most common methodology when solving transient problems using the finite element method, is to perform the usual Garlerkin weighted residual formulation on the spatial derivatives, body forces and time derivative terms, and then using a finite difference scheme to approximate the time derivative. The development, techniques and limitations that we introduced in Chapter 8 will apply here. The time discretization, explicit and implicit methods, stability, numerical diffusion etc., have all been discussed in detail in that chapter. For a general partial differential equation, we can write... [Pg.466]

Continuum wavefunctions can also be generated by solving the partial differential equation (3.3) directly without first transforming it into a set of ordinary differential equations. One possible scheme is the finite elements method (Askar and Rabitz 1984 Jaquet 1987). Another method, which has been applied for the calculation of multi-dimensional scattering wavefunctions, is the 5-matrix version of the Kohn variational principle (Zhang and Miller 1990). [Pg.71]

Finite element methods — The finite element method is a powerful and flexible numerical technique for the approximate solution of (both ordinary and partial) differential equations involving replacing the continuous problem with unknown solution by a system of algebraic equations. The method was first introduced by Richard Courant in 1943 [i], and over the next three decades, and particularly in the 1960s, a comprehensive mathematical framework was developed to underpin the method. [Pg.273]


See other pages where Finite element method partial differential equation is mentioned: [Pg.235]    [Pg.288]    [Pg.17]    [Pg.18]    [Pg.54]    [Pg.153]    [Pg.101]    [Pg.467]    [Pg.227]    [Pg.272]    [Pg.103]    [Pg.526]    [Pg.239]    [Pg.43]    [Pg.58]    [Pg.171]    [Pg.308]    [Pg.155]    [Pg.169]    [Pg.96]    [Pg.413]    [Pg.445]    [Pg.647]    [Pg.49]    [Pg.61]    [Pg.272]    [Pg.39]    [Pg.151]    [Pg.220]    [Pg.264]    [Pg.51]    [Pg.64]    [Pg.294]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Differential equations method

Differential equations partial

Differential method

Finite Element Equations

Finite-element

Finite-element method

Partial differential

Partial equation

© 2024 chempedia.info