Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatigue failure, materials

The bellows is formed from a length of thin-walled tubing by extmsion in a die. The metals used in the constmction of the bellows must be ductile enough for reasonably easy fabrication and have a high resistance to fatigue failure. Materials commonly used are brass, bronze, beryllium copper, alloys of nickel and copper, steel, and Monel (5). [Pg.22]

In addition to the reduction in performance, flow maldistribution may result in increased corrosion, erosion, wear, fouling, fatigue, and material failure, particularly for Hquid flows. This problem is even more pronounced for multiphase or phase change flows as compared to single-phase flows. Flow distribution problems exist for almost all types of exchangers and can have a significant impact on energy, environment, material, and cost in most industries. [Pg.496]

What of the corrosion resistance of new turbine-blade alloys like DS eutectics Well, an alloy like NiaAl-NisNb loses 0.05 mm of metal from its surface in 48 hours at the anticipated operating temperature of 1155°C for such alloys. This is obviously not a good performance, and coatings will be required before these materials are suitable for application. At lower oxidation rates, a more insidious effect takes place - preferential attack of one of the phases, with penetration along interphase boundaries. Obviously this type of attack, occurring under a break in the coating, can easily lead to fatigue failure and raises another problem in the use of DS eutectics. [Pg.223]

If the material has a critical stress intensity factor of 1.8 MN m and it is known that the moulding process produces defects 40 m long, estimate the maximum repeated tensile stress which could be applied to this material for at least 10 cycles without causing fatigue failure. [Pg.167]

Stainless steels are subject to fatigue failure under dry conditions as are all metallic materials, having distinct fatigue limits where level is dependent on steel type and heat treatment. The limits can be depressed by the simultaneous action of a corrodent, the degree depending upon the nature of the corrodent. Under severe conditions the limit can be displaced to very low values and it is customary to describe resistance by an endurance limit, that is the cyclic stress to give rupture at a specific number of cycles when in contact with a specific corrodent. Some comparative data are in Table 3.25. [Pg.555]

Fatigue data are normally presented as a plot of the stress (S) versus the number of cycles (N) that cause failure at that stress the data plotted defined as an S-N curve (Fig. 2-43). The use of an S-N curve is used to establish a fatigue endurance limit strength. The curve asymptotically approaches a parallel to the abscissa, thus indicating the endurance limit as the value that will produce failure. Below this limit the material is less susceptible to fatigue failure. [Pg.82]

Testing mode Basically material fatigue failure is the result of damage caused by repeated loading or deformation of a structure. The magnitudes of the stresses and strains induced by this repeated loading or deformation are typically so low that they would not be expected to cause failure if they were applied only once. [Pg.84]

Two conclusions can be drawn from an inspection of the S-N curve (1) the higher the applied material stress or strain, the fewer cycles the specimen can survive and (2) the curve gradually approaches a stress or strain level called the fatigue endurance limit below which the material is much less susceptible to fatigue failure. Different materials may... [Pg.84]

In many cases, a product fails when the material begins to yield plastically. In a few cases, one may tolerate a small dimensional change and permit a static load that exceeds the yield strength. Actual fracture at the ultimate strength of the material would then constitute failure. The criterion for failure may be based on normal or shear stress in either case. Impact, creep and fatigue failures are the most common mode of failures. Other modes of failure include excessive elastic deflection or buckling. The actual failure mechanism may be quite complicated each failure theory is only an attempt to explain the failure mechanism for a given class of materials. In each case a safety factor is employed to eliminate failure. [Pg.293]

The main failure of equipment is a loss of process containment. The consequences depend on the properties and the amount of the leaking material and the conditions both inside and outside of process equipment. Pumps and compressors (Marshall, 1987) are perhaps the most vulnerable items of pressurised systems, because they contain moving parts and they are also subject to erosion and cavitation. Pumps and compressors produce also vibration, which may lead to fatigue failure. Both seals and bearings of pumps and compressors are liable to failure. In addition agitator systems present difficulties due to mechanical stresses, though they operate at much lower speeds than pumps. [Pg.73]

Figure 5.40 Variation of stress with time that accounts for fatigue failure by (a) a reversed stress cycle and (b) a repeated stress cycle. Reprinted, by permission, from W. Callister, Materials Science and Engineering An Introduction, 5th ed., p. 210. Copyright 2000 by John WUey Sons, Inc. Figure 5.40 Variation of stress with time that accounts for fatigue failure by (a) a reversed stress cycle and (b) a repeated stress cycle. Reprinted, by permission, from W. Callister, Materials Science and Engineering An Introduction, 5th ed., p. 210. Copyright 2000 by John WUey Sons, Inc.
The phenomenon involving failure of a material subject to repeated loading is called fatigue. Failure occurs at stress levels below those observed in the "static" tests described above. Lee et al (22) examined the characteristics of some sulphur concretes subject to fatigue. Fatigue lives (the number of cycles to failure) considerably in excess of those for portland cement concretes were observed. Polymerization of the sulphur with di-cyclopentadiene was observed to reduce fatigue life. [Pg.145]

Particular attention should be paid to fatigue failures as they may reveal design deficiencies rather than material defects. [Pg.419]

Sonic absorption has been less systematically studied than sonic speed. Yet it is of considerable practical importance. Vibration damping in machinery, automobiles and aircraft constitutes an important task for both the reduction of noise and the prevention of fatigue failure of the materials. [Pg.517]

In composite materials, such as tyres (reinforced with tensile canvas) and other reinforced materials, the adhesion between the two phases is of prime importance poor adhesion may induce fatigue failure. [Pg.882]


See other pages where Fatigue failure, materials is mentioned: [Pg.505]    [Pg.245]    [Pg.213]    [Pg.138]    [Pg.140]    [Pg.141]    [Pg.167]    [Pg.167]    [Pg.239]    [Pg.333]    [Pg.1291]    [Pg.1331]    [Pg.1334]    [Pg.1335]    [Pg.44]    [Pg.84]    [Pg.84]    [Pg.84]    [Pg.86]    [Pg.87]    [Pg.98]    [Pg.674]    [Pg.28]    [Pg.850]    [Pg.212]    [Pg.604]    [Pg.212]    [Pg.32]    [Pg.104]    [Pg.118]    [Pg.119]    [Pg.409]    [Pg.497]    [Pg.198]   
See also in sourсe #XX -- [ Pg.104 , Pg.105 ]




SEARCH



Failure fatigue

Material Fatigue

Material failure

Material failure fatigue, creep

© 2024 chempedia.info