Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fast features

This fast, feature-packed, machine language utility-makes custom characters a breeze. Its unique features let you concentrate on your artwork instead of programming. [Pg.199]

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

How does one monitor a chemical reaction tliat occurs on a time scale faster tlian milliseconds The two approaches introduced above, relaxation spectroscopy and flash photolysis, are typically used for fast kinetic studies. Relaxation metliods may be applied to reactions in which finite amounts of botli reactants and products are present at final equilibrium. The time course of relaxation is monitored after application of a rapid perturbation to tire equilibrium mixture. An important feature of relaxation approaches to kinetic studies is that tire changes are always observed as first order kinetics (as long as tire perturbation is relatively small). This linearization of tire observed kinetics means... [Pg.2950]

Amino-5 -deoxy-2, 3 -0-isopropylideneadenosine was acylated at N-5 with an activated derivative of the 6-carboxy-2-naphthyl ester of Kemp s acid imide. The resulting molecule possesses self-complementary binding sites, the key feature of replicating molecules that act as templates for their own reproduction. The dimer of this molecule is, however, not very stable K = 630 L mol ). When the two initially mentioned educts are added, a small proportion of the ternary complex is also formed and undergoes a fast, template-catalysed... [Pg.347]

Essential features of an automated method are the specificity, ie, the assay should be free from interference by other semm or urine constituents, and the sensitivity, ie, the detector response for typical sample concentration of the species measured should be large enough compared to the noise level to ensure assay precision. Also important are the speed, ie, the reaction should occur within a convenient time interval (for fast analysis rates), and adequate range, the result for most samples should fall within the allowable range of the assay. [Pg.392]

Most mordant dyes are monoazo stmctures. The most important feature of this class of dyes is excellent fastness to light and washing. Mordant dyes are available ia aU shades of the spectmm with the exceptioa of bright violets, blues, and greens. To be useful, the metal complexes must be stable, ie, must not demetallize when subjected to dyebath conditions and aU aftertreatment processes, especially repeated washings. Chromium forms stable chelate rings with mordant dyes which are not affected by treatment with either weak acid or alkaU (see Coordination compounds). [Pg.436]

The measurement ranges for the base-metal thermocouples are 0 to +750 °C (type J), -200 to +1200 °C (type K), and -200 to +350 °C (type T). The noble-metal thermocouples can be used at higher temperatures up to 1700 °C. The dynamic response of sheathed thermocouples is not very fast however, a probe made from bare, thin wires can have very fast dynamic properties. One of the best features of thermocouples is the simplicity of making new probes by soldering or welding the ends of two wires together. [Pg.1138]

The measurement range is dependent on the instrument but can cover the range -50 to +500 °C. The accuracy is not as high as the best contact thermometers. One reason for this is that the emissivity of the surface has an effect on the measurement result, and an emissivity correction is necessary for most instruments. The positive features are noncontact measurement and very fast dynamics, which enable a rapid scan of surface temperatures from a distance this is convenient when carrying out, for example, thermal comfort measurements. [Pg.1139]

A remarkable feature of the Birch reduction of estradiol 3-methyl ether derivatives, as well as of other metal-ammonia reductions, is the extreme rapidity of reaction. Sodium and -butyl alcohol, a metal-alcohol combination having a comparatively slow rate of reduction, effects the reduction of estradiol 3-methyl ether to the extent of 96% in 5 minutes at —33° lithium also effects complete reduction under the same conditions as is to be expected. Shorter reaction times were not studied. At —70°, reduction with sodium occurs to the extent of 56 % in 5 minutes, although reduction with lithium is virtually complete (96%) in the same time. (The slow rates of reduction of compounds of the 5-methoxytetralin type is exemplified by 5-methoxy-tetralin itself with sodium and f-butyl alcohol reduction occurs to the extent of only 50% in 6 hours vs. 99+% with lithium.) The iron catalyzed reaction of sodium with alcohols must be very fast since it competes so well with the rapid Birch reduction. One cannot compensate for the presence of iron in a Birch reduction mixture containing sodium by adding additional metal to extend the reaction time. The iron catalyzed sodium-alcohol reaction is sufficiently rapid that the aromatic steroid still remains largely unreduced. [Pg.22]

Instrumental factors. Heating rate. When a substance is heated at a fast rate, the temperature of decomposition will be higher than that obtained at a slower rate of heating. The effect is shown for a single-step reaction in Fig. 11.4. The curve AB represents the decomposition curve at a slow heating rate, whereas the curve CD is that due to the faster heating rate. If TA and Tc are the decomposition temperatures at the start of the reaction and the final temperatures on completion of the decomposition are TB and TD, the following features can be noted ... [Pg.431]


See other pages where Fast features is mentioned: [Pg.108]    [Pg.108]    [Pg.463]    [Pg.800]    [Pg.830]    [Pg.1063]    [Pg.1331]    [Pg.1808]    [Pg.2201]    [Pg.3029]    [Pg.252]    [Pg.271]    [Pg.371]    [Pg.156]    [Pg.292]    [Pg.338]    [Pg.131]    [Pg.459]    [Pg.278]    [Pg.513]    [Pg.143]    [Pg.393]    [Pg.2048]    [Pg.153]    [Pg.188]    [Pg.526]    [Pg.771]    [Pg.29]    [Pg.223]    [Pg.55]    [Pg.412]    [Pg.783]    [Pg.361]    [Pg.201]    [Pg.212]    [Pg.98]    [Pg.250]    [Pg.123]    [Pg.286]    [Pg.463]    [Pg.372]    [Pg.43]   
See also in sourсe #XX -- [ Pg.411 ]




SEARCH



Fast reactor design features

© 2024 chempedia.info