Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Expansion coefficient polymers

Coefficient of Linear Thermal Expansion. The coefficients of linear thermal expansion of polymers are higher than those for most rigid materials at ambient temperatures because of the supercooled-liquid nature of the polymeric state, and this applies to the cellular state as well. Variation of this property with density and temperature has been reported for polystyrene foams (202) and for foams in general (22). When cellular polymers are used as components of large stmctures, the coefficient of thermal expansion must be considered carefully because of its magnitude compared with those of most nonpolymeric stmctural materials (203). [Pg.414]

The Rheometric Scientific RDA II dynamic analy2er is designed for characteri2ation of polymer melts and soHds in the form of rectangular bars. It makes computer-controUed measurements of dynamic shear viscosity, elastic modulus, loss modulus, tan 5, and linear thermal expansion coefficient over a temperature range of ambient to 600°C (—150°C optional) at frequencies 10 -500 rad/s. It is particularly useful for the characteri2ation of materials that experience considerable changes in properties because of thermal transitions or chemical reactions. [Pg.201]

The specific heats of polymers are large - typically 5 times more than those of metals when measured per kg. When measured per m, however, they are about the same because of the large differences in density. The coefficients of thermal expansion of polymers are enormous, 10 to 100 times larger than those of metals. This can lead to problems of thermal stress when polymers and metals are joined. And the thermal conductivities are small, 100 to 1000 times smaller than those of metals. This makes polymers attractive for thermal insulation, particularly when foamed. [Pg.226]

Obviously, the discrepancy between the experimental data [238-241] and predictions of the theory [236,237] can be attributed to the difference of the coefficients of thermal expansion. The polymer exerts pressure on the filler, thereby masking the effect of the strength of adhesion on the modulus. The pressure on the filler may be sufficiently high. In [243] it was found, for example, that in PP, quartz particles experienced a compression force of about 100 MPa after cold drawing of the composite the force reduces to 50 MPa in the direction of drawing but at the same time increases to 300 MPa in the perpendicular direction. [Pg.35]

As a consequence, the overall penetrant uptake cannot be used to get direct informations on the degree of plasticization, due to the multiplicity of the polymer-diluent interactions. The same amount of sorbed water may differently depress the glass transition temperature of systems having different thermal expansion coefficients, hydrogen bond capacity or characterized by a nodular structure that can be easily crazed in presence of sorbed water. The sorption modes, the models used to describe them and the mechanisms of plasticization are presented in the following discussion. [Pg.191]

Network properties and microscopic structures of various epoxy resins cross-linked by phenolic novolacs were investigated by Suzuki et al.97 Positron annihilation spectroscopy (PAS) was utilized to characterize intermolecular spacing of networks and the results were compared to bulk polymer properties. The lifetimes (t3) and intensities (/3) of the active species (positronium ions) correspond to volume and number of holes which constitute the free volume in the network. Networks cured with flexible epoxies had more holes throughout the temperature range, and the space increased with temperature increases. Glass transition temperatures and thermal expansion coefficients (a) were calculated from plots of t3 versus temperature. The Tgs and thermal expansion coefficients obtained from PAS were lower titan those obtained from thermomechanical analysis. These differences were attributed to micro-Brownian motions determined by PAS versus macroscopic polymer properties determined by thermomechanical analysis. [Pg.416]

Au is the difference between the liquid and glassy volumetric expansion coefficients and the temperatures are in kelvin. "The WLF equation holds between I], or / f 10 K and abftut 100 K above 7A,. Above this temperature, for thermally stable polymers, Berry and Fox (28) have shown that a useful extension of the WLF equation is the addition of an Arrhenius term with a low activation energy. [Pg.76]

The thermal expansion, however, changes behavior at the glass transition, which is a phenomenon that was first analyzed in detail in a careful study by Kovacs.4 In the polymer melt, the thermal expansion coefficient is almost constant, and it is again so in the glass but with a smaller value. At the glass transition, there is therefore a break in the dependence of density on temperature that is the foremost thermophysical characteristic of the glass transition. [Pg.3]

Polymer materials are frequently used under stress loadings and these may be concentrated at certain parts of the structure. Thermal stresses may be induced by non-uniform heating or by differential expansion coefficients the latter may be an important factor in the degradation of fibre-reinforced composites in the radiation environment of space. [Pg.9]

A study of the PVT properties of hyperbranched aliphatic polyesters by Hult et al. [ 117] showed that these polyesters were dense structures with smaller thermal expansion coefficients and lower compressibility compared to some linear polymers. [Pg.22]

The effect of blending LDPE with EVA or a styrene-isoprene block copolymer was investigated (178). The properties (thermal expansion coefficient. Young s modulus, thermal conductivity) of the foamed blends usually lie between the limits of the foamed constituents, although the relationship between property and blend content is not always linear. The reasons must he in the microstructure most polymer pairs are immiscible, but some such as PS/polyphenylene oxide (PPO) are miscible. Eor the immiscible blends, the majority phase tends to be continuous, but the form of the minor phase can vary. Blends of EVA and metallocene catalysed ethylene-octene copolymer have different morphologies depending on the EVA content (5). With 25% EVA, the EVA phase appears as fine spherical inclusions in the LDPE matrix. The results of these experiments on polymer films will apply to foams made from the same polymers. [Pg.4]

Thermal expansion differences exist between the tooth and the polymer as well as between the polymer and the filler. The tooth has a thermal expansion coefficient of 11 x 10-6/°C while conventional filled composites are 2-4 times greater [63, 252], Stresses arise as a result of these differences, and a breakdown between the junction of the restoration and the cavity margin may result. The breakdown leads to subsequent leakage of oral fluids down the resulting marginal gap and the potential for further decay. Ideal materials would have nearly identical thermal expansion of resin, filler, and tooth structure. Presently, the coefficients of thermal expansion in dental restorative resins are controlled and reduced by the amount and size of the ceramic filler particles in the resin. The microfilled composites with the lower filler loading have greater coefficient of thermal expansions that can be 5-7 times that of tooth structure. Acrylic resin systems without ceramic filler have coefficients of thermal expansion that are 9 times that of tooth structure [202-204, 253],... [Pg.209]


See other pages where Expansion coefficient polymers is mentioned: [Pg.498]    [Pg.9]    [Pg.199]    [Pg.199]    [Pg.26]    [Pg.266]    [Pg.664]    [Pg.231]    [Pg.56]    [Pg.141]    [Pg.289]    [Pg.17]    [Pg.19]    [Pg.17]    [Pg.22]    [Pg.84]    [Pg.274]    [Pg.325]    [Pg.4]    [Pg.55]    [Pg.55]    [Pg.665]    [Pg.258]    [Pg.92]    [Pg.154]    [Pg.63]    [Pg.64]    [Pg.107]    [Pg.505]    [Pg.414]    [Pg.24]    [Pg.119]    [Pg.178]    [Pg.181]   
See also in sourсe #XX -- [ Pg.1198 ]




SEARCH



Polymer expansion

© 2024 chempedia.info