Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exciplexes intramolecular

Numerous examples of intermolecular and intramolecular photocycloaddition to heterocyclic systems (including the dimerization of individual heterocycles) have now been reported. Two types of cycloaddition can readily be effected photochemically, namely, [n2 + 2] and [ 4 + 4] additions. Although concerted suprafacial additions of this type are allowed photochemical processes, in reality many cycloadditions occur via diradicals, zwitterions or exciplexes. [Pg.278]

Mechanistic evidence indicates 450,451> that the triplet enone first approaches the olefinic partner to form an exciplex. The next step consists in the formation of one of the new C—C bonds to give a 1,4-diradical, which is now the immediate precursor of the cyclobutane. Both exciplex and 1,4-diradical can decay resp. disproportionate to afford ground state enone and alkene. Eventually oxetane formation, i.e. addition of the carbonyl group of the enone to an olefin is also observed452. Although at first view the photocycloaddition of an enone to an alkene would be expected to afford a variety of structurally related products, the knowledge of the influence of substituents on the stereochemical outcome of the reaction allows the selective synthesis of the desired annelation product in inter-molecular reactions 453,454a b). As for intramolecular reactions, the substituent effects are made up by structural limitations 449). [Pg.57]

Photoinduced intramolecular interaction of t-S and tertiary amine moieties linked with a polymethylene chain has also been studied24. The photoexcitation of fraws-stilbene in which a tertiary amine is attached to the ortho position with a (CH2)i-3 linker leads to fluorescent exciplexes by intramolecular electron transfer, and results in no more than trans-cis isomerization. The failure to give adducts from the intramolecular exciplexes could arise from the unfavourable exciplex geometry to undergo the necessary bond formation. [Pg.686]

Intramolecular fluorescence quenching of phenylalkylamines 107 have been studied earlier102 but no exciplex was observed. An exciplex is believed to be an intermediate in the intramolecular styrylamine 106 photoreaction". [Pg.704]

F. Pages, J.-P. Desvergne, and H. Bouas-Laurent, Nonlinear triple exciplexes Thermodynamic and kinetic aspects of the intramolecular exciplex formation between anthracene and the two anchored nitrogens of an anthraceno-cryptand, /. Am, Chem. Soc. Ill, 96-102(1989). [Pg.46]

Intramolecular Folding The Excimer/Exciplex Mechanism and Dewar Isomerization (Butterfly Mechanism)... [Pg.117]

If definite stoichiometry is maintained in the exciplex formation, an isoemissive point similar to isosbestic point in absorption miy be observed. An interesting example of intra-molecular exciplex formation has been reported foi 9-methoxy-10-phenanthrenecarboxanil. The aniline group is not necessarily coplanar with the phenanthrene moiety but is oriented perpendicular to it. The u-elcctron located on its N-atom interacts with the excited -electron system and an intramolecular exciplex with T-bone type structure is formed in rigid glassy medium where rotation is restricted. Temperature dependence of fluorescence of this compound in methylcyclohexane-isopentane (3 1) solvent shows a definite isoemissive point (Figure 6.8). As the solvent melts and movement is restored to the molecule, structured fluorescence reappears. [Pg.185]

The imbedded nature of the potential curves in Figure 6 for electron transfer in the inverted region is a feature shared with the nonradiative decay of molecular excited states. In fact, in the inverted region another channel for the transition between states is by emission, D,A -> D+,A + hv, which can be observed, for example, from organic exciplexes,74 chemiluminescent reactions,75 or from intramolecular charge transfer excited states, e.g. (bipy)2Rum(bipyT)2+ - (bipy)2Run(bipy)2+ + hv. [Pg.357]

The present contribution deals mainly with novel 9-substituted anthracenes in which the substituent either incorporates or by itself represents a 7r-system, and whose effect on the overall molecular shape is such as to have major photochemical and photophysical repercussions [33]. Not discussed are anthracenophanes [34] and various types of bichromophoric anthracenes whose excited state properties have been reviewed previously [8,25,35]. Considered beyond the scope of this contribution are the photochemistry and photophysics of anthraceno crown ethers and cryptands [36-38], and of intramolecular exciplexes derived from anthracenes linked to aromatic amines [39-41],... [Pg.141]

In polar solvents such as chloroform, dichloromethane, acetone, and acetonitrile, the fluorescence quantum yields of 97a-d decrease by varying degrees (see Table 19). Moreover, in the case of the phenyl and acetyl derivatives 97c and 97d, the rather drastic decrease of the structured fluorescence from the locally excited anthracene is associated with the appearance of a structureless, red-shifted emission which is attributable to an intramolecular exciplex. For 97d, in which the electron acceptor properties of the aromatic carbonyl moiety are enhanced by p-acetyl substitution, exciplex emission is dominant even in toluene solution (see Figure 22). [Pg.190]

In polar solvents, the quantum yields for the emission from the locally excited state of anthronyl-anthracenes 98 and 99 decrease drastically (see Tables 20 and 21), and a structureless, red-shifted exciplex emission is observed (see Figure 23). For the parent compound 98a in dichloromethane, for example, the quantum yield of emission from the exciplex state is 0.012, but that of emission from the locally excited state has decreased to 0.00058 (cf. Tables 20 and 22). Thus, intramolecular exciplex formation between the photoexcited anthracene moiety and the aromatic ketone in its electronic ground state represents the major mode of deactivation in polar solvents. [Pg.195]

The name lepidopterene refers to the hydrocarbon 113 (L) whose butterflylike molecular shape was first revealed by X-ray diffraction analysis [129,130]. The structured electronic absorption spectra of lepidopterenes around 270 nm closely resemble that of 9,10-dihydroanthracene (see Figure 31). However, in terms of excited state properties, lepidopterenes have very little in common with 9,10-dihydroanthracene, which in solution fluoresces with a quantum yield of 0.16. By contrast, photoexcitation of lepidopterenes leads mainly to intramolecular exciplexes of 7i-chromophorically substituted anthracenes in an adiabatic process, for which both the molecular topology... [Pg.206]

A review of photo-cycloadditions of dienones and quinones has been published.41 The first example of a Lewis acid-catalysed 2 + 2-cycloaddition of styrene with naphthoquinone has been reported.42 FMO methods have been used to investigate the effect of substituents on the regiochemistry of the 2 + 2-photo-cycloaddition of a, fi-unsaturated carbonyl compounds with substituted alkenes.43 Evidence has been presented for the presence of a triplet exciplex intermediate in the photo-cycloaddition of 4,4-dimethylcyclohexenone to 1,1-diphenylethylene.44 The intramolecular 2-1-2-photo-cycloaddition of 2-acyloxy-3-hexenoylcyclohexenones (26) is highly diastereo-selective yielding the tricyclic adduct (27) (Scheme 10).45... [Pg.434]

Steady-state fluorescence spectroscopy has also been used to study solvation processes in supercritical fluids. For example, Okada et al. (29) and Kajimoto and co-workers (30) studied intramolecular excited-state complexation (exciplex) and charge-transfer formation, respectively, in supercritical CHF3. In the latter studies, the observed spectral shift was more than expected based on the McRae theory (56,57), this was attributed to cluster formation. In other studies, Brennecke and Eckert (5,31,44,45) examined the fluorescence of pyrene in supercritical CO2, C2HSteady-state emission spectra were used to show density augmentation near the critical point. Additional studies investigated the formation of the pyrene excimer (i.e., the reaction of excited- and ground-state pyrene monomers to form the excited-state dimer). These authors concluded that the observance of the pyrene excimer in the supercritical fluid medium was a consequence of increased solute-solute interactions. [Pg.11]


See other pages where Exciplexes intramolecular is mentioned: [Pg.49]    [Pg.15]    [Pg.49]    [Pg.15]    [Pg.257]    [Pg.263]    [Pg.192]    [Pg.313]    [Pg.579]    [Pg.10]    [Pg.693]    [Pg.701]    [Pg.704]    [Pg.269]    [Pg.51]    [Pg.117]    [Pg.83]    [Pg.128]    [Pg.495]    [Pg.203]    [Pg.141]    [Pg.199]    [Pg.200]    [Pg.201]    [Pg.213]    [Pg.218]    [Pg.381]    [Pg.205]    [Pg.274]    [Pg.279]    [Pg.434]    [Pg.398]    [Pg.29]   
See also in sourсe #XX -- [ Pg.185 ]

See also in sourсe #XX -- [ Pg.185 , Pg.313 ]




SEARCH



Exciplex

Exciplexes

© 2024 chempedia.info