Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity ethyne

COT is prepared by the polymerization of ethyne at moderate temperature and pressure in the presence of nickel salts. The molecule is non-planar and behaves as a typical cyclic olefin, having no aromatic properties. It may be catalytically hydrogenated to cyclo-octene, but with Zn and dil. sulphuric acid gives 1,3,6-cyclooclairiene. It reacts with maleic anhydride to give an adduct, m.p. 166 C, derived from the isomeric structure bicyclo-4,2,0-octa-2,4,7-triene(I) ... [Pg.122]

Ethyne is the starting point for the manufacture of a wide range of chemicals, amongst which the most important are acrylonitrile, vinyl chloride, vinyl acetate, ethanal, ethanoic acid, tri- and perchloro-ethylene, neoprene and polyvinyl alcohol. Processes such as vinylation, ethinylation, carbonylation, oligomerization and Reppe processes offer the possibility of producing various organic chemicals cheaply. Used in oxy-acetylene welding. [Pg.169]

CH2 CH C CH. Colourless gas with a sweet odour b.p. 5°C. Manufactured by the controlled low-temperature telomerization of ethyne in the presence of an aqueous solution of CuCI and NH Cl. Reduced by hydrogen to butadiene and, finally, butane. Reacts with water in the presence of HgSO to give methyl vinyl ketone. Forms salts. Forms 2-chloro-butadiene (chloroprene) with hydrochloric acid and certain metallic chlorides. [Pg.266]

Commercially, pyridine is manufactured from ethyne and ammonia. It is used as a solvent, particularly in the plastics industry, in the manufacture of nicotinic acid, various drugs and rubber chemicals. [Pg.334]

The solid readily dissolves chemically in concentrated hydrochloric acid, forming a complex, and in ammonia as the colourless, linear, complex cation [H3N -> Cu <- NHj] (cf AgCl) if air is absent (in the presence of air, this is oxidis to a blue ammino-copper(II) complex). This solution of ammoniacal copper(I) chloride is a good solvent or carbon monoxide, forming an addition compound CuCl. CO. H2O, and as such is used in gas analysis. On passing ethyne through the ammoniacal solution, a red-brown precipitate of hydrated copper(I) dicarbide (explosive when dry) is obtained ... [Pg.415]

Bond Distances, Bond Angles, and Bond Energies in Ethane, Ethene, and Ethyne (Table 9 1, p 342) Stmctures of a-Ammo Acids (Table 27 1, pp 1054-1055)... [Pg.1327]

Dihydro-2f/-pyran-2-one has been prepared by reductive cycliza-tion of 5-hydroxy-2-pentynoic acid [2-Pentynoic acid, 5-hydroxy-], which is obtained in two steps from acetylene [Ethyne] and ethylene oxide [Oxirane] 3 and by the reaction of dihydropyran [277-Pyran, 3,4-dihydro-] with singlet oxygen [Oxygen, singlet].4,5 2ff-Pyran-2-one has been prepared by pyrolysis of heavy metal salts of coumalic acid [2//-Pyran-5-carboxylic acid, 2-oxo-],8 by pyrolysis of a-pyrone-6-carboxylic acid [211 - Pyran-6-carboxyl ic acid, 2-oxo-] over copper,7 and by pyrolysis of coumalic acid over copper (66-70% yield).8... [Pg.51]

In which of the following molecules could there be an M-to-ir transition Explain your choices, (a) Formic acid, HCOOH (b) ethyne, C2H2 (c) methanol, CH,OH ... [Pg.256]

Nonmetals form covalent molecular hydrides, which consist of discrete molecules. These compounds are volatile and many are Bronstcd acids. Some are gases— for example, ammonia, the hydrogen halides (HF, HC1, HBr, HI), and the lighter hydrocarbons such as methane, ethane, ethene, and ethyne. Liquid molecular hydrides include water and hydrocarbons such as octane and benzene. [Pg.704]

The hydrogen atoms of ethyne are considerably more acidic than those of ethane or ethane ... [Pg.304]

Vitamin B12 catalyzed also the dechlorination of tetrachloroethene (PCE) to tri-chloroethene (TCE) and 1,2-dichloroethene (DCE) in the presence of dithiothreitol or Ti(III) citrate [137-141], but zero-valent metals have also been used as bulk electron donors [142, 143]. With vitamin B12, carbon mass recoveries were 81-84% for PCE reduction and 89% for TCE reduction cis-l,2-DCE, ethene, and ethyne were the main products [138, 139]. Using Ni(II) humic acid complexes, TCE reduction was more rapid, leading to ethane and ethene as the primary products [144, 145]. Angst, Schwarzenbach and colleagues [140, 141] have shown that the corrinoid-catalyzed dechlorinations of the DCE isomers and vinyl chloride (VC) to ethene and ethyne were pH-dependent, and showed the reactivity order 1,1-DCE>VC> trans-DCE>cis-DCE. Similar results have been obtained by Lesage and colleagues [146]. Dror and Schlautmann [147, 148] have demonstrated the importance of specific core metals and their solubility for the reactivity of a porphyrin complex. [Pg.530]

E-(P-Alkylvinyl)phenyliodonium salts react with tetra-n-butylammonium halides to yield the correspondingly substituted Z-haloethenes (80-100% for chloro-, bromo- and iodo-derivatives) [41], In contrast, in the corresponding reaction with Z-(2-benzenesulphonyl-ethenyl)phenyliodonium salts, nucleophilic substitution occurs with retention of configuration to yield the Z-2-benzenesulphonyl-l-haloethenes [42], The ammonium fluorides fail to yield the fluoroethenes, but produce the ethynes by simple elimination [41]. Where carboxylic acids have low solubility in organic solvents, their conversion into the acid chlorides is frequently difficult. Phase-transfer catalysis not only allows the conversion to be effected rapidly, it also results in high yields of a wide range of acid chlorides [43]. [Pg.28]

The generation of active radicals as a result of bond breakage makes cation-radicals useful as syn-thons. For example, arylsulfenamide cation-radicals may be used as sources of sulfenyl radicals. The reaction of 4 -nitrobenzenesulfenanilide with Lewis acids, such as BF3 and AICI3, leads to the formation of sulfonamide cation-radical. The latter appears to be an active sulfenyl transfer species. In the presence of anisol, ethenes, or ethynes, it gives phenylthiyl derivatives (Benati et al. 1990, Gross and Montevecchi 1993). [Pg.387]

Kinetic parameters k, often also and AS, occasionally AV ) for formation and dissociation of several pentacyanoferrate(II) complexes [Fe(CN)5L]" have been established. Ligands L include several S- and A-donor heterocycles,4-methyl- and 4-amino-pyridines, a series of alkylamines, 3- and 4-hydroxy- and 3- and 4-methoxy-pyridines, several amino acids, nicotinamide, " 4-pyridine aldoxime, 3-Me and 3-Ph sydnones, several bis-pyridine ligands,neutral, protonated, and methylated 4,4 -bipyridyl, 1,2-bis(4-pyridyl)ethane and traTO-l,2-bis0-pyridyl)ethene, pyrazine- 4,4 -bipyridyl- and bis(4-pyridyl)ethyne-pentaammine-cobalt(III), edta-ruthenium(III), and pentaammineruthenium-(II)and-(III) complexes of... [Pg.425]


See other pages where Acidity ethyne is mentioned: [Pg.168]    [Pg.168]    [Pg.169]    [Pg.169]    [Pg.227]    [Pg.259]    [Pg.419]    [Pg.420]    [Pg.420]    [Pg.174]    [Pg.19]    [Pg.100]    [Pg.237]    [Pg.291]    [Pg.59]    [Pg.104]    [Pg.300]    [Pg.174]    [Pg.140]    [Pg.5]    [Pg.59]    [Pg.291]   
See also in sourсe #XX -- [ Pg.437 , Pg.438 , Pg.439 ]




SEARCH



Ethyn

Ethyne

© 2024 chempedia.info